Environmental degradation of the compostable plastic packaging material poly(lactic) acid and its impact on fungal communities in compost
Başlık çevirisi mevcut değil.
- Tez No: 401582
- Danışmanlar: DR. GEOFF ROBSON
- Tez Türü: Doktora
- Konular: Biyoteknoloji, Biotechnology
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2013
- Dil: İngilizce
- Üniversite: The University of Manchester
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 199
Özet
Özet yok.
Özet (Çeviri)
Conventional plastics have been used for decades in a diverse range of applications, however, many are resistant to degradation, leading to environmental pollution and their manufacture is dependent on non-renewable fossil fuels. Therefore, there has been an increasing need for eco-friendly biodegradable materials from renewable resources. Poly(lactic acid) (PLA) is a compostable polyester with a hydrolysable backbone that is susceptible to biodegradation and produced from renewable feedstocks. PLA has mechanical qualities comparable to non-biodegradable plastics, and currently is commercialized as food-packaging polymer for short shelf-life products. However, while PLA hydrolysis at elevated temperatures proceeds abiotically, ultimately releasing lactic acid and short chain oligomers, the role of microorganisms is unclear. Since PLA short-shelf life products are disposed after use, understanding the role of microorganisms and the effect of degradation on microbial populations in the environment is important. Therefore, the aims of this research was to (a) determine the relative importance of biotic and abiotic factors on PLA degradation; (b) to isolate putative fungal PLA degraders from the surface of PLA when buried in compost or soil and to test their ability to degrade PLA; (c) to assess the impact of PLA degradation on fungal communities when entering compost systems. The roles of abiotic and biotic factors in the degradation of high molecular weight PLA were investigated by comparing degradation rates in compost, soil and sterile water at temperatures of 25°, 37°, 45°, 50° and 55°C. Tensile strength loss and molecular weight decline of PLA in microorganism-rich compost and soil were greater than chemical hydrolysis in sterile water at elevated temperatures ($45°C) indicating microorganisms can directly enhance PLA degradation. Since extensive fungal growth was observed on the surface of PLA when buried in compost and soil, putative fungal PLA degraders were isolated from PLA surface and their community profile on PLA surface was compared with the compost and soil community with a molecular method, terminal restriction fragment polymorphism (TRFLP). Among the identified fungi, Thermomyces lanuginosus was the dominant isolate recovered and shown to enhance PLA degradation in compost at 50°C. The fungal community profile on PLA surface was different than the fungal profile in compost and soil suggesting enrichment for PLA degraders on the surface of PLA. In order to determine the impact of PLA degradation on the fungal compost community, two different high molecular weight PLA sources, films and granules were buried in compost at 10%, 25% and 50% (w/w) concentration for 4 months at 25°C and 50°C and the community profile analysed by TRFLP and pyrosequencing. TRFLP revealed that when PLA did not degrade, the fungal community shifted back toward the initial compost community profile, however, when PLA degraded to its monomers releasing lactic acid at 50°C at a concentration of 50% (w/w) it changed the fungal community profile and decreased the fungal diversity. Pyrosequencing revealed that the presence of PLA enriched for Thermomyces in the compost population over time.
Benzer Tezler
- Biobased/biodegradable/compostable/antibacterial polymeric mulching and food packaging films
Biyoesaslı/biyobozunur/kompost edilebilir/antibakteriyal polimerik tarımsal örtü ve gıda ambalaj filmleri
KOUROUSH SALİMİ
Doktora
İngilizce
2015
KimyaHacettepe ÜniversitesiKimya Mühendisliği Ana Bilim Dalı
PROF. DR. ERHAN BİŞKİN
- Jelatin reolojisinin biyobozunur film oluşturma özellikleri üzerine etkisinin araştırılması
Investigation of the characteristics for biodegradable and compostable gelatin films depending on the rheologic properties
AYKUT SANCAKLI
Yüksek Lisans
Türkçe
2021
Deri MühendisliğiEge ÜniversitesiDeri Mühendisliği Ana Bilim Dalı
PROF. DR. BAHRİ BAŞARAN
- Effects of blend morphology and layered silicates' localization on the mechanical, thermal and viscoelastic properties of multiphase biopolymeric systems
Harman morfolojisinin ve tabakalı silikatların lokalizasyonunun multifazlı biyopolimerik sistemlerin mekanik, termal ve viskoelastik özellikleri üzerine etkisi
YUSUF KAHRAMAN
Doktora
İngilizce
2022
Polimer Bilim ve Teknolojisiİstanbul Teknik ÜniversitesiMetalurji ve Malzeme Mühendisliği Ana Bilim Dalı
DOÇ. DR. MOHAMMADREZA NOFAR
- Hafif raylı sistemlerde köprü ile balastsız üstyapı geçiş bölgelerinin irdelenmesi
Investigation of transition zones between bridge and balastless track for light rail transit systems
FAHRETTİN ERSİN ERBAŞ
Yüksek Lisans
Türkçe
2017
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. ZÜBEYDE ÖZTÜRK
- Havalı kollektörle ısıtma ve ekserji analizi
Heating with the solar air collector and its exergy analysis
MUSTAFA ALTUNBAŞ