Geri Dön

Multi-objective generation expansion planning considering uncertainty and modeling with the Pareto uncertainty index

Başlık çevirisi mevcut değil.

  1. Tez No: 402056
  2. Yazar: SALTUK BUĞRA SELÇUKLU
  3. Danışmanlar: DR. DAVID W. COIT
  4. Tez Türü: Doktora
  5. Konular: Endüstri ve Endüstri Mühendisliği, İşletme, Industrial and Industrial Engineering, Business Administration
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: İngilizce
  9. Üniversite: Rutgers, The State University of New Jersey-New Brunswick Campus
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 227

Özet

Özet yok.

Özet (Çeviri)

Many real life optimization problems are multi-objective problems where objectives under consideration usually conflict with each other and they are also stochastic due to inherent uncertainties. The electricity Generation Expansion Planning (GEP) problem is an example of such problems in which the goal is to expand the electric power network with new power plant investments including renewable resources. Decisions are made where and when to build new power plants and which technology to choose for new investments. Objectives can include but are not limited to minimization of the cost and pollutant emissions and maximization of reliability. There are inherent uncertainties in the GEP problem due to climate change, demand increase, fuel prices, technological progress and many other aspects that have to be considered. Some of these uncertainties directly affect the objective functions and some affect the constraint sets in the optimization model. In this study, a new uncertainty metric, the Pareto Uncertainty Index (PUI), is presented. The PUI includes uncertainty as part of the Pareto optimality concept so that the decision or policy maker can observe the uncertainty of Pareto optimal solutions. Using the PUI approach for objective function uncertainties and chance constrained programming or scenarios for constraint set uncertainties, a new multi-objective stochastic genetic algorithm, the Pareto Uncertain Genetic Algorithm (PUGA), is presented in this research, as well. In contrast with the other multi-objective genetic algorithms and classical methods, PUGA can incorporate both the multi-objective and stochastic aspects of problem solving without any transformation. A new post-Pareto pruning approach that reduces the number of Pareto optimal solutions to a smaller practical set is also included in PUGA with the help of the uncertainty information preserved in the PUI. Furthermore, this uncertainty information is used for risk assessments of solutions depending on the risk preferences of decision makers. The PUI and PUGA concepts are demonstrated and tested on several problems including the US Northeast region generation expansion planning (NEGEP) problem.

Benzer Tezler

  1. Stokastik programlama yaklaşımı ile elektrik üretim endüstrisinin modellenmesi

    Electricity generation industry modelling: Stochastic programming approach

    HASAN BASRİ ARSLAN

    Doktora

    Türkçe

    Türkçe

    2017

    EnerjiHacettepe Üniversitesi

    Nükleer Enerji Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ŞULE ERGÜN

  2. Generation expansion planning considering electricity market

    Elektrik piyasası düşünülerek üretim genişletme planlaması

    EGEMEN UYAR

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Elektrik ve Elektronik MühendisliğiDokuz Eylül Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ENGİN KARATEPE

  3. Inequity-averse optimization in disaster preparedness and response

    Afete hazırlık ve müdahale konusunda eşitsizlikten bağımsız optimizasyon

    MAHDI MOSTAJABDAVEH

    Doktora

    İngilizce

    İngilizce

    2019

    Endüstri ve Endüstri MühendisliğiKoç Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    Prof. Dr. FATMA SİBEL SALMAN

  4. Rüzgar enerji santralleri entegre edilmiş elektrik şebekelerinde iletim hattı planlaması

    Transmission expansion planning in power systems with wind power plants

    FARUK UGRANLI

    Doktora

    Türkçe

    Türkçe

    2016

    Elektrik ve Elektronik MühendisliğiEge Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ENGİN KARATEPE

  5. Advanced evolutionary computation for distributionsystem automation

    Dağıtım şebekesi otomasyonu için gelişmiş evrimsel algoritmalar

    BAHMAN AHMADI

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. AYDOĞAN ÖZDEMİR

    DR. ÖĞR. ÜYESİ OGUZHAN CEYLAN