Geri Dön

Dealing with selection bias in multilevel observational studies: An evaluation of propensity score and direct estimation procedures

Başlık çevirisi mevcut değil.

  1. Tez No: 402350
  2. Yazar: SUNGUR GÜREL
  3. Danışmanlar: DR. WALTER LEITE
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: İngilizce
  9. Üniversite: University of Florida
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 108

Özet

Özet yok.

Özet (Çeviri)

Secondary data analyses are popular among educational researchers because of the increased availability of nationwide longitudinal studies. One issue with using secondary data to evaluate program effectiveness is potential selection bias due to a lack of random assignment of participants to conditions. Rubin's potential outcomes framework is commonly used to address the lack of random assignment issue. Another complication is that a hierarchical data structure is common for large scale datasets and cluster effects should be accounted for in the analysis. Both of those issues should be addressed properly, so that the analysis results would be unbiased. Propensity score methods are commonly used to mitigate the selection bias problem when data is not clustered, but little research has been done on how to account for cluster effects in propensity score estimation. In addition, no research has been performed on the direct estimation of average treatment effects in multilevel observational studies yet. I conducted a Monte Carlo simulation study to understand the performance of various hierarchical logistic regression models and data mining methods when the treatment assignment mechanism is complex and varies across clusters. I specifically focused on propensity score based procedures in Chapter 2 and direct estimation based procedures in Chapter 3. Results (i) guide the applied researcher in terms of how to implement propensity score and direct treatment effect estimation procedures, (ii) provide acceptable levels of model misspecifications in propensity score and direct treatment effect estimation methods, and (iii) suggest a preferable approach to select most appropriate propensity score and direct treatment effect estimation procedure under specific conditions. The results indicated that the parametric modeling is preferable over data mining in both propensity score and direct estimation procedures. Dealing with selection bias through propensity scores requires more observations than dealing with selection bias through direct estimation. In the propensity score procedures, the effect of model misspecification was not apparent in the relative bias of the ATT estimates but standard errors were inflated. Finally, standard errors that are obtained from direct estimation tend to be overestimated when the dependence between observed and counterfactual outcomes is ignored.

Benzer Tezler

  1. İletim hatlarının oluştuduğu elektrik ve magnetik alanların insan sağlığı üzerindeki etkileri

    Effects of electric and magnetic fields produced by transmission lines on health

    AYŞE TÜTER

    Yüksek Lisans

    Türkçe

    Türkçe

    1995

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    PROF.DR. NESRİN TARKAN

  2. Lastik sektöründe pazarlama faaliyetlerinin incelenmesi

    The Analysis of marketing activities in tire market

    MEHMET ÖZDEN

    Yüksek Lisans

    Türkçe

    Türkçe

    1990

    İşletmeİstanbul Teknik Üniversitesi

    DOÇ. DR. SELİME SEZGİN

  3. Muhasebede ihtiyatlılık kavramı: Borç sözleşmeleri, sürdürülebilirlik raporlaması ve kriz dönemlerinde bankaların kredi kapasitesi üzerinde ihtiyatlı muhasebe uygulamalarının analizi

    The principle of accounting conservatism: Analysis of conservative accounting practices on debt contracts, sustainability reporting and banks' credit capacity in crisis periods

    DESTAN HALİT AKBULUT

    Doktora

    Türkçe

    Türkçe

    2021

    BankacılıkGalatasaray Üniversitesi

    İşletme Ana Bilim Dalı

    PROF. DR. İDİL KAYA

  4. Kompleks değerli yapay sinir ağları için yeni aktivasyon fonksiyonlarının tanımlanması

    The new activation functions for complex valued neural networks

    MEHMET ÇELEBİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Elektrik ve Elektronik MühendisliğiKonya Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MURAT CEYLAN

  5. Methods used in reduction of errors arising from nonresponse

    Yanıtlamamadan kaynaklanan hataların azaltılmasında kullanılan yöntemler

    MÜGE BORAZAN ÇELİKBIÇAK

    Yüksek Lisans

    İngilizce

    İngilizce

    2006

    İstatistikDokuz Eylül Üniversitesi

    İstatistik Ana Bilim Dalı

    YRD. DOÇ. DR. ÖZLEM EGE ORUÇ