The performance of propensity score methods to estimate the average treatment effect in observational studies with selection bias: A Monte Carlo simulation study
Başlık çevirisi mevcut değil.
- Tez No: 402401
- Danışmanlar: DR. WALTER LEITE, DR. JAMES ALGINA
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Matematik, Computer Engineering and Computer Science and Control, Mathematics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2012
- Dil: İngilizce
- Üniversite: University of Florida
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 61
Özet
Özet yok.
Özet (Çeviri)
We investigated the performance of four different propensity score (PS) methods to reduce selection bias in estimates of the average treatment effect (ATE) in observational studies: inverse probability of treatment weighting (IPTW), truncated inverse probability of treatment weighting (TIPTW), optimal full propensity score matching (OFPSM), and propensity score stratification (PSS). We compared these methods in combination with three methods of standard error estimation: weighted least squares regression (WLS), Taylor series linearization (TSL), and jackknife (JK). We conducted a Monte Carlo Simulation study manipulating the number of subjects and the ratio of treated to total sample size. The results indicated that IPTW and OFPSM methods removed almost all of the bias while TIPTW and PSS removed about 90% of the bias. Some of TSL and JK standard errors were acceptable, some marginally overestimated, and some moderately overestimated. For the lower ratio of treated on sample sizes, all of the WLS standard errors were strongly underestimated, as designs get balanced, the underestimation gets less serious. Especially for the OFPSM, all of the TSL and JK standard errors were overestimated and WLS standard errors under estimated under all simulated conditions.
Benzer Tezler
- Three essays in applied macroeconomics: A quasi-experimental approach
Uygulamalı makroekonomi üzerine makaleler: Yarı deneysel bir yaklaşım
AYMAR BERENGER ISMAEL NANA
- Dealing with selection bias in multilevel observational studies: An evaluation of propensity score and direct estimation procedures
Başlık çevirisi yok
SUNGUR GÜREL
Doktora
İngilizce
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolUniversity of FloridaDR. WALTER LEITE
- Towards development of best practice methods of causal inferenceto assess treatment selection biomarkers from non-randomizeddata
Başlık çevirisi yok
HULYA KOCYİGİT
- Çoklu atama sonrası propensity skor tahmin yöntemlerine yeni yaklaşımlar
New methods for estimating propensity scores following multiple imputation
SEVİNÇ PÜREN YÜCEL KARAKAYA
Doktora
Türkçe
2024
BiyoistatistikÇukurova ÜniversitesiBiyoistatistik Ana Bilim Dalı
DOÇ. DR. İLKER ÜNAL
- Eğilim skoru eşleştirme yöntemlerinin performanslarının değerlendirilmesi ve web tabanlı bir arayüzün geliştirilmesi
Evaluating the performance of propensity score matching methods and developing a web based interface
GÜLDEN HAKVERDİ
Doktora
Türkçe
2023
BiyoistatistikEge ÜniversitesiBiyoistatistik ve Tıbbi Bilişim Ana Bilim Dalı
DOÇ. DR. TİMUR KÖSE
PROF. DR. CEMİL ÇOLAK