Geri Dön

Optimal quantization and approximation in source coding and stochastic control

Başlık çevirisi mevcut değil.

  1. Tez No: 403380
  2. Yazar: NACİ SALDI
  3. Danışmanlar: Prof. SERDAR YÜKSEL, Prof. TAMAS LİNDER
  4. Tez Türü: Doktora
  5. Konular: Matematik, İstatistik, Mathematics, Statistics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: İngilizce
  9. Üniversite: Queen's University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 267

Özet

Özet yok.

Özet (Çeviri)

This thesis deals with non-standard optimal quantization and approximation problems in source coding and stochastic control. The rst part of the thesis considers randomized quantization. Adapted from stochastic control, a general representation of randomized quantizers that is probabilistically equivalent to common models in the literature is proposed via mixtures of joint probability measures induced by deterministic quantizers. Using this general model, we prove the existence of an optimal randomized quantizer for the generalized distribution preserving quantization problem. A Shannon theoretic version of this source coding problem is also considered, in which an optimal (minimum distortion) coding of stationary and memoryless source is studied under the requirement that the quantizer's output distribution also be stationary and memoryless possibly different than source distribution. We provide a characterization of the achievable rate region where the rate region includes both the coding rate and the rate of common randomness shared between the encoder and the decoder. In the second part of the thesis, we consider the quantization problems in stochastic control from viewpoints of information transmission and computation. The rst problem studies the nite-action approximation (via quantization of the action space) of deterministic stationary policies of a discrete time Markov decision process (MDP), while the second problem considers nite-state approximations (via quantization of the state space) of discrete time Markov decision process. Under certain continuity conditions on the components of the MDP, we establish that optimal policies for the nite models can approximate with arbitrary precision optimal deterministic stationary policies for the original MDP. Combining these results leads to a constructive scheme for obtaining near optimal solutions via well known algorithms developed for nite state/action MDPs. For both problems, we also obtain explicit bounds on the approximation error in terms of the number of representation points in the quantizer, under further conditions.

Benzer Tezler

  1. Düşük bir hızlarında konuşma kodlama ve uygulamaları

    Low bit rate speech coding and applications

    TARIK AŞKIN

  2. Time interleaved sar adc design with background calibration

    Ayrık zamanlı ardışık yaklaşımlı analog sayısal çevirici tasarımı ve kalibrasyonu

    MUHAMMED YASİN ADIYAMAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ TUFAN COŞKUN KARALAR

  3. Bulanık kontrolör karar tablosunun genetik algoritmalarla oluşturulması

    Genetic algoritthmes for finding fuzzy controller decision table

    OSMAN KAAN EROL

  4. Image sequence compression using transform domain quantization techniques

    Dönüşüm uzayı nicemleme teknikleri ile görüntü dizisi sıkıştırılması

    MUSTAFA ALİ TÜRKER

    Yüksek Lisans

    İngilizce

    İngilizce

    1994

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. METE SEVERCAN