Air injection technique to mitigate liquefaction beneath shallow foundations
Başlık çevirisi mevcut değil.
- Tez No: 403393
- Danışmanlar: Prof. GOPAL MADABHUSHI
- Tez Türü: Doktora
- Konular: Deprem Mühendisliği, Earthquake Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2017
- Dil: İngilizce
- Üniversite: University of Cambridge
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 243
Özet
Özet yok.
Özet (Çeviri)
Historical and recent earthquakes often remind the need for taking precautions against earthquake-induced liquefaction damage that structures on shallow foundations can suffer. Air injection technique has the potential to improve the soil supporting new and existing structures. There is, however, little research on its application and performance beneath existing shallow foundations. The aim of this research was to provide a comprehensive view of the air injection technique by conducting well-controlled dynamic centrifuge and 1-g shaking table tests, along with static soil column experiments in the laboratory. Detailed analysis of the test results highlighted that air injection was an effective way of minimising the soil-softening and loss of shear stiffness associated with earthquake-induced liquefaction. A decreasing trend in the magnitude of excess pore pressures and foundation settlements was observed with decreasing degree of saturation. Air injection technique was also found to perform better under increased confining stresses. Injecting air in a controlled manner (e.g. applying low air injection rate and pressure) was shown to be crucial for the safety of foundations. A wider and more uniformly desaturated zone was achieved with increasing air injection pressure, but which concurrently increased the settlements that shallow foundations experienced. It was also found that most of the air could remain entrapped in partially saturated soil under different simulated field conditions for a long period of time, which indicated the long-term reliability of the mitigation accomplished. Particle image velocimetry was utilised to identify deformation mechanisms that develop underneath and in the ground surrounding shallow foundations. It was shown that foundations resting on saturated soil settled excessively. Foundation settlements were predominantly driven by deviatoric strains, and a bearing capacity failure mechanism did form. When air was injected into saturated soil, air reduced the build-up of excess pore pressures as it contracted during dynamic loading but increased soil compressibility. Deviatoric strain-induced deformations significantly reduced, which resulted in much smaller settlements. The observed settlements were principally caused by volumetric strains that arose from increased soil compressibility. Given the depth of liquefaction reduced significantly for air-injected partially saturated soil, a complete bearing capacity failure mechanism could not occur. The lower the degree of saturation, the shallower and more localised the deformations were observed.
Benzer Tezler
- Tarihi yapıların deprem performansı ve güçlendirme teknikleri
Structural performance of historical masonry building and techniques of strengthening
TUĞÇE TETİK
Yüksek Lisans
Türkçe
2015
Deprem Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. ZEKAİ CELEP
- Green extraction and encapsulation of black rosehip polyphenols: İn vitro bioaccessibility, bioavailability, and biological activities
Siyah kuşburnu polifenollerinin yeşil ekstraksiyonu ve enkapsülasyonu: İn vitro biyoerişilebilirlik, biyoyararlılık, ve biyolojik aktiviteleri
KADRİYE NUR KASAPOĞLU
Doktora
İngilizce
2022
Gıda Mühendisliğiİstanbul Teknik ÜniversitesiGıda Mühendisliği Ana Bilim Dalı
PROF. DR. BERAAT ÖZÇELİK
- Development of combustion tube experimental setup for underground coal gasification
Yer altı kömür gazlaştırması için yanma tüpü deney düzeneği geliştirilmesi
İSMAİL HAKKI SARIÇAM
Yüksek Lisans
İngilizce
2021
Petrol ve Doğal Gaz Mühendisliğiİstanbul Teknik ÜniversitesiPetrol ve Doğal Gaz Mühendisliği Ana Bilim Dalı
DOÇ. DR. MURAT ÇINAR
- Ameliyathane havalandırma sistemi tasarımı ve HAD yöntemi ile hava akış analizi
Air conditioning system designing of an operating room and air flow analysis using the CFD technique
MUHAMMED GALİP ÖZER
Yüksek Lisans
Türkçe
2019
Makine Mühendisliğiİstanbul Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. LÜTFULLAH KUDDUSİ
- Deksketoprofen trometamol'ün tavuk embriyolarında tibia gelişimine etkisi
The effect of dexketoprofen trometamol on the development of tibia in chicken embryos specialization thesis
MUHAMMED YILDIZ
Tıpta Uzmanlık
Türkçe
2020
Ortopedi ve TravmatolojiKahramanmaraş Sütçü İmam ÜniversitesiOrtopedi ve Travmatoloji Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BÜLENT GÜNERİ