Geri Dön

Lasso tahminlerinin genetik algoritma yaklaşımı ile bulunması

Finding lasso esti̇mates via genetic algorithm approximation

  1. Tez No: 425807
  2. Yazar: MUSTAFA DOĞAN
  3. Danışmanlar: PROF. DR. VEDİDE REZAN USLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: İstatistik, Statistics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2016
  8. Dil: Türkçe
  9. Üniversite: Ondokuz Mayıs Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: İstatistik Teorisi Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 117

Özet

Çoklu regresyon analizinde birden fazla bağımsız değişken arasında yüksek derecede ilişki olduğunda“çoklu doğrusal bağlantı sorunu”diye adlandırılan sorun ortaya çıkmaktadır. Çoklu bağlantı sorunu EKK tahmin edicilerinin tutarsız olmalarına neden olur. Bu problemin mevcut olması halinde EKK tahmin edicisi yerine alternatif olarak önerilen yanlı tahmin ediciler kullanılmaktadır. EKK tahmin edicileri ile yanlı tahmin ediciler arasında tercih yapmak gerektiğinde iki temel varsayım dikkate alınır. Bunlar yansızlık ve etkinliktir. EKK ile elde edilen tahmin ediciler yansız ve az etkili, yanlı tahmin ediciler ise yanlı ve daha etkilidir. Bu çalışmada yanlı tahmin yöntemlerinden olan LASSO tahmin edicisinin çözümü irdelenmektedir. Bir yenilik olarak LASSO tahmin edicisinin uygun çözümünün elde edilmesinde yumuşak hesaplama tekniklerinden sayılabilecek olan Genetik Algoritma kullanılmaktadır. Önerilen yöntemden elde edilen parametre tahminlerine ait aralık tahminlerini bulabilmek için yeniden örnekleme yöntemi olan bootstrap metodu kullanılmıştır.

Özet (Çeviri)

In multiple regression explanatory variables are assumed to be independent each other. The multicollinearity problem arises when this assumption is violated. The multicollinearity problem have some negative effects on the Least Squares estimates. When the multicollinearity problem is present the standard errors of the Least Squares estimates are larger than they should be in real. In that case it is suggested to use the methods providing biased estimates with smaller standard errors, which is why they are preferred. In this thesis a new approach that uses a genetic algorithm, which is one of the soft computing techniques, is suggested for finding the parameter estimates obtained by LASSO technique. In order to obtain the confidence interval for the model parameters the bootstrap method is used.

Benzer Tezler

  1. DSSAT bitki simülasyon modeli ve uzaktan algılama verilerinden elde edilen indisler kullanılarak buğday verim tahmini: İslahiye ve Nurdağı örneği

    Wheat yield estimation using DSSAT crop simulation model and indices obtained from remote sensing: Islahiye and Nurdagi case

    ÖMER VANLI

    Doktora

    Türkçe

    Türkçe

    2019

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    Bilişim Uygulamaları Ana Bilim Dalı

    DOÇ. DR. BURAK BERK ÜSTÜNDAĞ

  2. Bayesian variable selection in circular regression models using lasso

    Dairesel regresyon modellerinde lassoya dayalı Bayesçi değişken seçimi

    ONUR ÇAMLI

    Doktora

    İngilizce

    İngilizce

    2023

    İstatistikOrta Doğu Teknik Üniversitesi

    İstatistik Ana Bilim Dalı

    PROF. DR. ZEYNEP IŞIL KALAYLIOĞLU AKYILDIZ

    PROF. DR. ASHİS SENGUPTA

  3. Çoklu bağlantı durumunda makine öğrenimi tabanlı regresyon analizi yöntemleri

    Machine learning-basel regression analysis methods in the presence of multicollinearity

    TUBA BENEK ARSLAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    İstatistikGazi Üniversitesi

    İstatistik Ana Bilim Dalı

    PROF. DR. MELTEM EKİZ

  4. Regresyon ve yapay sinir ağları yöntemi ile istanbul ili doğalgaz tüketim tahmini

    Natural gas consumption forecast in istanbul province with regression and artificial neural networks method

    EDA MANGAN KARACA

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Endüstri ve Endüstri MühendisliğiYıldız Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ FUAT GÜNERİ

  5. Cezalandırılmış en çok olabilirlik yöntemi ile parametre tahmini

    Parameter estimation with the penalized maximum likelihood method

    HÜLYA DALKILIÇ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    İstatistikAnkara Üniversitesi

    İstatistik Ana Bilim Dalı

    PROF. DR. OLÇAY ARSLAN