Local receptive fields based extreme learning machine for face recognition
Yüz algılama için yerel algılayıcı alanlara dayalı aşırı öğrenme makinesi
- Tez No: 492726
- Danışmanlar: PROF. DR. ABDULKADİR ŞENGÜR
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: İngilizce
- Üniversite: Fırat Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Yazılım Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 51
Özet
Son yıllarda birçok yüz tanıma yöntemi geliştirilmiş ve yapay sinir ağları (ANN), konvolusyonel nöron ağı (CNN), Gauss karışımları ve benzeri gibi görüntü işleme uygulamalarında uygulanmıştır. Bununla birlikte, her biri yerel minimum, yoğun insan müdahale oranı ve yavaş yakınsama gibi bazı konulardan muzdarip. CNN genellikle çok uzun eğitim sürelerine sahip olan geri yayılım (BP) öğrenme prosedürünü kullanır. Buna ek olarak, geri yayılım genellikle bir yerel minimuma ulaşma eğilimindedir. Yukarıdaki yöntemlerin her biri, eğitim bölümündeki hata oranını düşürmek için birçok yineleme gerektirse de, aşırı öğrenme makinesini uyguladığımızda, bu da yerel algılayıcı alanları ile eşleme haritasını atamaktadır; bu durumda, önerilen yöntem sadece tek bir iterasyonda sonuçları elde edebiliyor. Buna ek olarak ELM, geri yayılım yönteminin bu dezavantajlarını hafifletmeyi önermiştir. Ayrıca, Caltech, UFI ve CBCL olmak üzere üç yüz veri setinde kapsamlı deneyler yapılmıştır. Elde edilen sonuçlar cesaret vericidir ve daha önce bildirilen birkaç başka sonuç ile de karşılaştırılmıştır. Caltech yüz veri kümesinde test doğruluğu %98.15, CBCL veri kümesinde %98.34 ve UFI yüz veri kümesinde %66.11'dir. Bu nedenle, yerel algılayıcılı alanlarına dayanan aşırı öğrenme makinesinin yüz tanımada kullanılan önceki yöntemler arasında daha fazla avantaj sağlayabileceğini görebiliriz.
Özet (Çeviri)
In the recent years, many face recognition methods were developed and applied in the image processing applications, such as artificial neural networks (ANN), convolutional neuron network (CNN), Gaussian mixtures and so on. However, each of them is suffering from some issues like the local minima, intensive human intervention rate, and slow convergence. CNN generally uses the back propagation (BP) learning procedure, which has very long training periods. In addition, back-propagation generally tends to reach a local minimum. While each of the above methods needs many iterations to reduce the error rate in the training section, we apply extreme learning machine, which it runs throw pooling map with Local receptive fields, in this case, the proposed method can get the result just in one iteration. In addition, ELM proposed to alleviate these drawbacks of the back-propagation method. The Extensive experiments were conducted on three face datasets namely Caltech, UFI, and CBCL. The obtained results are encouraging and compared with several other results previously reported. Testing accuracy in Caltech face dataset is 98.15%, also in the CBCL dataset is 98.34% and in UFI face dataset is 66.11%. Based on the above result the extreme learning machine based on local receptive fields can have more advantage among previous methods used for face recognition.
Benzer Tezler
- Potentialities for and limits to inclusion by education: The case of Syrian children's education in Turkey and child labour
Eğitim tarafından içermede potansiyeller ve limitler: Türkiye'deki Suriyeli çocukların eğitimi ve çocuk işçiliği
YASEMİN KIZILOĞLU
Yüksek Lisans
İngilizce
2021
Sosyal HizmetOrta Doğu Teknik ÜniversitesiSosyal Politika Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MEHMET OKYAYUZ
- A novel deep learning based approach for spatiotemporal image fusion
Konum-zamansal görüntü kaynaştırma için derin öğrenme tabanlı yeni bir yaklaşım
FIRAT ERDEM
Doktora
İngilizce
2023
Jeodezi ve FotogrametriEskişehir Teknik ÜniversitesiUzaktan Algılama ve Coğrafi Bilgi Sistemleri Ana Bilim Dalı
PROF. DR. UĞUR AVDAN
- Face recognition using Gabor wavelet transform
Gabor dalgacıklarını kullanarak yüz tanıma
BURCU KEPENEKCİ
Yüksek Lisans
İngilizce
2001
Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik ÜniversitesiElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. A. AYDIN ALATAN
DOÇ. DR. GÖZDE BOZDAĞI AKAR
- Enseignement / apprentissage du FLE avec les jeux vidéo
Video oyunlarıyla Fransızca yabancı dil öğretimi / öğrenimi
SERCAN ALABAY
Yüksek Lisans
Fransızca
2014
Eğitim ve ÖğretimUludağ ÜniversitesiFransız Dili Eğitimi Ana Bilim Dalı
PROF. DR. ŞEREF KARA