İnsansız hava araçları için kazanç ayarlamalı gürbüz kontrol
Gain scheduled robust control of unmanned aerial vehicles
- Tez No: 498480
- Danışmanlar: PROF. DR. COŞKU KASNAKOĞLU
- Tez Türü: Doktora
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: H_∞ Optimizasyon, Karma hassasiyet, Döngü şekillendirme, Gürbüz kontrol, Parametreye bağımlı kontrol, Modelleme, Benzetim, H_∞ Optimization, Mixed sensitivity, Loop shaping, Robust control, Paramater dependent control, Modelling, Simulation
- Yıl: 2018
- Dil: Türkçe
- Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 208
Özet
Bu tezde insansız hava araçlarının (İHA) kazanç ayarlamalı gürbüz kontrolü incelenmiştir. Temel olarak H_∞ optimizasyon problemi doğrusal matris eşitsizlikleri (DME) kullanılarak çözülmüştür. Kontrol tasarımında ise H_∞ karma hassasiyet ve H_∞ döngü şekillendirme prensiplerine dayalı kontrolcüler elde edilmiştir. İlk olarak, çeşitli uçuş koşullarında küçük bir insansız helikopter için kararlılık ve referans izleme sağlayabilen karma hassasiyet prensibine dayalı kontrolcü tasarımları üzerinde durulmuştur. Öncelikle yerel doğrusal modeller kullanılarak yerel karma hassasiyet H_∞ denetleyicileri bütün denge koşullarında tasarlanmıştır. Yerel H_∞ denetleyiciler yerel kararlılık ve performans koşullarını sağlarken, tam zarf üzerinde kararlılık ve referans izlemede başarısız oldukları görülmüştür. Bu problemin önüne geçmek için, kazanç ayarlamalı H_∞ denetleyiciler ortak Lyapunov fonksiyonu kullanılarak tasarlanmıştır. Bu yöntem daha tutucu bir yöntem olmakla beraber kontrolcü sentezinde tek bir ortak Lyapunov fonksiyonu kullanıldığından kapalı çevrim sistemin kararlılığı ara noktalarda da garanti altına alınmaktadır. Bu şekilde yapılan tasarım ile tüm uçuş zarfında kararlılığı ve performansı garanti eden kazanç ayarlamalı denetleyicileri sentezlenmiştir. Elde edilen kontrolcüler doğrusal olmayan benzetim modelinde test edilmiştir. Daha sonra küçük bir insansız helikopter için kazanç ayarlamalı H_∞ döngü şekillendirme kontrolcüsü tasarımı incelenmiştir. Teorik olarak garanti edilen bir kontrol yasası için, doğrusal helikopter modellerinin parametreye bağımlılığı kullanılarak, parametre bağımlı bir H_∞ döngü şekillendirme denetleyicisi tasarlanmıştır. Önerilen tasarım, ortak bir Lyapunov fonksiyonuyla parametreye bağlı değişen parametreye bağımlı bir kontrolcü sentezlemek için kullanılmıştır. Bu kontrolcüler birbirine bağlandığında, pratik bir kazanç ayarlamalı H_∞ döngü şekillendirme kontrolcüsü elde edilebilir. Bu tasarım yöntemi ile kararlılık ve performans tüm çalışma alanı içinde garanti edilmiş olur. H_∞ döngü şekillendirme denetleyicileri kazançlarının tüm tasarım zarfında iyi performans ve kararlılık sağladığı görülmektedir. Denge noktalarında düğüm düğüm (noktasal) sentez istenen uçuş zarfında tatmin edici bir performans göstermiştir. Son olarak ise önerilen metodun daha geniş bir perspektifte değerlendirilebilmesi için insansız küçük bir uçak için H_∞ döngü şekillendirme yöntemi kullanılarak eyleyici arızası durumunda acil iniş pilotu tasarlanmıştır. Bu yöntemde farklı hız ve irtifalarda denge noktaları bulunan uçağın yerel modelleri kullanılarak kontrolcüler tasarlanmış ve bu kontrolcüler birleştirilerek tüm acil durum uçuş zarfını kapsayan kazanç ayarlamalı kontrolcü elde edilmiştir. Daha sonra bu tasarım döngüde donanım testleri ile doğrulanmıştır. Sonuç olarak üç farklı uygulamada önerilen kazanç ayarlama yönteminin başarılı olduğu görülmüştür.
Özet (Çeviri)
In this thesis, gain scheduled robust control of unmanned aerial vehicles (UAV) is examined. Mathematical H_∞ optimization problem is solved using Linear Matrix Inequalties (LMIs) to synthesize sub-optimal controllers. Mixed sensitivity H_∞ optimization and H_∞ loop shaping methods are used in the controller design. First, a nonlinear helicopter model is built, trimmed and linearized from which an approximate affine-parameter-dependent model is constructed. Then, LMI based mixed sensivity H_∞ controllers are designed in order to achieve stabilization and reference tracking for a small unmanned helicopter at various flight conditions. Local H_∞ controllers are designed at trim conditions based on local linear models. The pointwise controllers achieve local stability and performance, but fail in stabilization and tracking over the full envelope. A scheduling controller is built by blending the local controller outputs. In addition, local H_∞ controllers are designed with common Lyapunov function. This allows controller scheduling between the design points with guaranteed stability and performance across the design envelope. Moreover, a parameter-dependent controller is synthesized to stabilize the affine-parameter-dependent helicopter model attaining stabilization and reference tracking for the family of linear models. All methods except for the local controller approach yield in satisfactory performance over the full flight envelope. Afterwards, H_∞ loop-shaping controller design is studied. Synthesized controler are scheduled parametrically with guaranteed robust stability over multiple operating points. Synthesis LMIs for state feedback and dynamic output feedback are derived in the parametric H_∞ loop-shaping framework. The results are extended to parameter-dependent plants to build a parameter-dependent controller utilizing a common Lyapunov function. The developed theory is applied to a small helicopter model, for which the operating region is covered by a family of linear models at a grid of operating points. It is shown through linear and nonlinear simulations that a desired loop shape is attained by the parameter dependent controller. Satisfactory tracking is achieved and stability is retained, even under mass and inertia variations. Moreover, to show the generality of the proposed technique, an autopilot is designed for an UAV where one of the lateral control surfaces, i.e. the aileron, becomes jammed and unusable. The autopilot handles the automatic recovery, autonomous guidance and landing of the disabled UAV. An accurate nonlinear aircraft model is used to build flight control laws for the UAV using loop-shaping theory to decouple longitudinal and lateral channels. The designed autopilot is tested on an example distress scenario involving aileron servoactuator jam. It is confirmed through hardware-in-the-loop (HIL) simulations that the autopilot design is capable of resuming safe flight and autonomous navigation under the fault scenario and is able to safely land the UAV to a target runway.
Benzer Tezler
- Development of a fault tolerant flight control system for a UAV
İnsansız bir hava aracı için hata toleranslı uçuş kontrol sistemi geliştirilmesi
SITKI YENAL VURAL
Doktora
İngilizce
2022
Havacılık ve Uzay Mühendisliğiİstanbul Teknik ÜniversitesiUçak ve Uzay Mühendisliği Ana Bilim Dalı
PROF. DR. CENGİZ HACIZADE
- Modeling, stability analysis and control system design of a small-sized tiltrotor UAV
Döner-rotorlu (tiltrotor) mini İHA modellemesi, kararlılık analizi ve kontrol sistemi tasarımı
FERİT ÇAKICI
Yüksek Lisans
İngilizce
2009
Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik ÜniversitesiElektrik ve Elektronik Mühendisliği Bölümü
PROF. DR. M. KEMAL LEBLEBİCİOĞLU
- İnsansız hava araçları için kayan sektör denetleyici tasarımıve deneysel olarak uygulanması
Sliding sector controller design for unmanned aerial vehiclesand its experimental application
SİNAN ÖZCAN
Doktora
Türkçe
2018
Havacılık MühendisliğiGazi ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. METİN UYMAZ SALAMCİ
DR. ÖĞR. ÜYESİ VOLKAN NALBANTOĞLU
- Differential flatness-based fuzzy controller design for aggressive maneuvering of quadcopters
Çok rotorlu hava araçlarının agresif manevra kontrolü için diferansiyel düzlük tabanlı bulanık kontrolör tasarımı
ÇAĞRI GÜZAY
Doktora
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
DOÇ. DR. TUFAN KUMBASAR
- Tarımsal uygulamalar için insansız hava aracı geliştirilmesi ve yörünge kontrolü
Development of an unmanned aerial vehicle for agricultural applications and trajectory control
ŞABAN ULUS
Doktora
Türkçe
2022
Havacılık ve Uzay MühendisliğiErciyes ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
PROF. DR. İKBAL ESKİ