Geri Dön

Comparative analysis of biological networks

Başlık çevirisi mevcut değil.

  1. Tez No: 508144
  2. Yazar: MEHMET KOYUTÜRK
  3. Danışmanlar: Prof. ANANTH GRAMA, Prof. WOJCIECH SZPANKOWSKI
  4. Tez Türü: Doktora
  5. Konular: Mikrobiyoloji, Microbiology
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2006
  8. Dil: İngilizce
  9. Üniversite: Purdue University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 130

Özet

Özet yok.

Özet (Çeviri)

Recent developments in molecular biology have resulted in experimental data that entails the relationships and interactions between biomolecules. Biomolecular interaction data, generally referred to as biological or cellular networks, are frequently abstracted using graph models. In systems biology, comparative analysis of these networks provides understanding of functional modularity in the cell by integrating cellular organization, functional hierarchy, and evolutionary conservation. In this dissertation, we address a number of algorithmic issues associated with comparative analysis of molecular interaction networks. We first discuss the problem of identifying common sub-networks in a collection of molecular interaction networks belonging to diverse species. The main algorithmic challenges here stem from the exponential worst-case complexity of the underlying mining problem involving large patterns, as well as the NP-hardness of the subgraph isomorphism problem. Three decades of research into theoretical aspects of this problem has highlighted the futility of syntactic approaches to this problem, thus motivating use of semantic information. Using a biologically motivated orthologcontraction technique for relating proteins across species, we render this problem tractable. We experimentally show that the proposed method can be used as a pruning heuristic that accelerates existing techniques significantly, as well as a standalone tool that conveys significant biological insights at near-interactive rates. With a view to understanding the conservation and divergence of functional modules, we also develop network alignment techniques, grounded in theoretical models of network evolution. Through graph-theoretic modeling of evolutionary events in terms of matches, mismatches, and duplications, we reduce the alignment problem to a graph optimization problem and develop effective heuristics to solve this problem efficiently. We probabilistically analyze the existence of highly connected and conserved subgraphs in random graphs, in order to assess the statistical significance of the patterns identified by our algorithms. Our methods and algorithms are implemented on various platforms and tested extensively on a comprehensive collection of molecular interaction data, illustrating the effectiveness of the algorithms in terms of providing novel biological insights as well as computational efficiency. The source code of the software described in this dissertation is available in the public domain and has been downloaded and effectively used by several researchers.

Benzer Tezler

  1. Comparative analysis of teafs and NP analysis to integrate interactome and transcriptome data to reveal response to C-pulse in Saccharomyces cerevisiae

    Etkileşim ve anlatım verisinin bütünleştirilmesi yöntemleri olan teafs ve NP analizi ile Saccharomyces cerevisiae?nin glikoz vurumuna tepkisinin karşılaştırmalı analizi

    MUHAMMED ERKAN KARABEKMEZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2010

    BiyomühendislikBoğaziçi Üniversitesi

    Kimya Mühendisliği Ana Bilim Dalı

    PROF. BETÜL KIRDAR

  2. Ortaokul öğrencilerinin biyolojik çeşitlilik konusu ile ilgili bilişsel yapılarının karşılaştırmalı olarak belirlenmesi

    Comparative determination of middle school students' cognitive structures related to biological diversity

    ZEYNEP ÇAM

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Eğitim ve ÖğretimBursa Uludağ Üniversitesi

    Matematik ve Fen Bilimleri Eğitimi Ana Bilim Dalı

    DOÇ. DR. DİLEK ZEREN ÖZER

  3. Analysis of long non-coding RNAs in epithelial-mesenchymal transition and mesenchymal-epithelial transition processes: Comparative synteny analysis between human and mouse genomes

    Epitel-mezenkimal geçiş ve mezenkimal-epitel geçiş süreçlerinde uzun kodlanmayan RNA'ların incelenmesi: insan ve fare genomları arasında sinteni analizi

    ELİF YILDIZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    GenetikDokuz Eylül Üniversitesi

    Genom Bilimleri ve Moleküler Biyoteknoloji Ana Bilim Dalı

    PROF. DR. GÖKHAN KARAKÜLAH

    DOÇ. DR. HANİ ALOTAİBİ

  4. Development of visual analysis interfaces for large biological data and characterization of immunomodulatory noncoding RNA networks cancer

    Büyük biyolojik veriler için görsel analiz arayüzlerinin geliştirilmesi ve kanserde immünomodülatör kodlamayan RNA ağlarının karakterizasyonu

    MUHAMMET EMRE KUŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Biyolojiİzmir Yüksek Teknoloji Enstitüsü

    Moleküler Biyoloji ve Genetik Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HÜSEYİN ATAKAN EKİZ

  5. Comparative whole genome sequencing and bioinformatic analysis of afreeze-thaw stress-resistant, industrial Saccharomyces cerevisiae strain

    Donma-erime stresine dirençli bir endüstriyel Saccharomyces cerevisiae suşunun karşılaştırmalı tüm genom dizileme ve biyoinformatik analizi

    BURCU TUĞBA ŞİMŞEK

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Biyoteknolojiİstanbul Teknik Üniversitesi

    Moleküler Biyoloji-Genetik ve Biyoteknoloji Ana Bilim Dalı

    PROF. DR. ZEYNEP PETEK ÇAKAR