Kısmi diferansiyel denklemlerin hypercube üzerinde paralel olarak çözülmesi
Parallel solution to partial differential equations on the hypercube
- Tez No: 535745
- Danışmanlar: DOÇ. DR. LEVENT TOKER
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1997
- Dil: Türkçe
- Üniversite: Ege Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 97
Özet
Kısmi diferansiyel denklemlerin genel çözümlerinde paralel bilgisayarların kullanılması ile çok karmaşık ve büyük hesaplamalar kısa sürede ve etkin olarak gerçekleştirilebilmektedir. Paralel bilgisayarların bilimsel ve mühendislik alanlarında kullanılması, bu alanlarda çalışanları büyük bir yükten kurtarmakta, çok büyük harcamalarla kurulan test ve deney ortamlarının yerini alarak önemli oranda kaynak tasarrufu sağlamakta ve çok büyük doğrulukta sonuçlar elde edilmesine olanak tanımaktadır. Bu nedenle kısmi diferansiyel denklemlerin paralel bilgisayarlarda çözülmesi konusu seçilmiştir. Kullanılan Jacobi, Gauss-Siedel, SOR ve SSOR algoritmaları arasında paralel olarak en etkin sonucun, Gauss-Siedel algoritması ile elde edildiği görülmüştür. Teorik olarak Gauss-Siedel algoritmasından daha iyi yakınsama oranına sahip olan SOR ve SSOR algoritmaları haberleşme sayısının çok olmasından dolayı daha kötü çalışma zamanlan elde etmişlerdir. Jacobi algoritması doğal olarak paralel olduğu halde yakınsamasının uzun sürmesinden dolayı işlemci sayısı arttıkça işlemciler arasındaki yoğun iletişim gereksinimi u nedeniyle çalışma zamanı da artmıştır. Jacobi algoritmasında en iyi çözümün her bir işlemci basma az sayıda satır düştüğü zaman elde edildiği görülmüştür.
Özet (Çeviri)
Usage of parallel computers in the solution of partial differential equations allows the computation of the results of very large and complex problems efficiently and in a very short time. Usage of parallel computers in science and engineering areas helps the people working in these areas and saves lots of valuable resources and allows very accurate results by eliminating the expensive test environments. For this reason, solution to differential equations on the parallel computer is selected as a subject. Within the algorithms used, the most efficient results are obtained using the Gauss-Siedel algorithm. Theoretically SOR and SSOR algorithms have greater converge rate than Gauss-Siedel algorithm, but due to their high communication rate, their total running time is greater. Although Jacobi algorithm is naturally parallel, running time increases with the increase in processor number, due to its slow convergence rate. The best results in Jacobi algorithm are obtained with a minimum number of rows per processor.
Benzer Tezler
- Multiple-domain analysis of 3-dimensional flow over an ellipsoidal body of aeronautical interest
Havacılık ile ilgili ellıpsoıdal bir yapı etrafındaki 3-boyutlu akışın çoklu alan analizi
ERKAN SEVİNÇ
Yüksek Lisans
İngilizce
2006
Makine MühendisliğiBoğaziçi ÜniversitesiHavacılık Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. ALİ ECDER
- Kısmi diferansiyel denklemlerin nümerik çözümleri için Fibonacci sıralama (Collocation) metodu ve residüel hata analizi
Fibonacci collocation method for numerical solutions of partial differential equations and residual error analysis
AYŞE KURT BAHŞI
- Kısmi diferansiyel denklemlerin meromorfik çözümleri üzerine
Meromorphic solutions of partial differantial equations
ZEHRA PINAR
- On the solution of fractional order partial differential equations with wavelet basis functions
Kesirli mertebeden kısmi diferansiyel denklemlerin dalgacık bazlı fonksiyonlarla çözümü
JUMANA HEKMA SALMAN ALKHALISSI
Doktora
İngilizce
2022
MatematikYıldız Teknik ÜniversitesiMatematik Ana Bilim Dalı
PROF. DR. İBRAHİM EMİROĞLU
PROF. DR. MUSTAFA BAYRAM
- Kısmi diferansiyel denklemlerin çözümünün analitik yöntemleri
Analytical methods of solution of partial differential equations
VEHBİ AKKAYA
Yüksek Lisans
Türkçe
2000
MatematikMarmara ÜniversitesiMatematik Eğitimi Ana Bilim Dalı
YRD. DOÇ. DR. DURSUN ÜSTÜNDAĞ