Geri Dön

Bilgisayar destekli akut lenfosit lösemi taraması

Computer-aided acute lymphocyte leukemia scanning

  1. Tez No: 561633
  2. Yazar: AHMET ÖZCAN
  3. Danışmanlar: DR. ÖĞR. ÜYESİ MURAT SELEK
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Selçuk Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilişim Teknolojileri Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 51

Özet

Bu çalışmada görüntü işleme yöntemiyle akut lenfosit lösemi taraması yapılmıştır. Yazılım olarak Matlab'ın görüntü işleme aracı, veri seti olarak 108 adet mikroskop görüntüsü kullanılmıştır. Mikroskop görüntülerinin elde edilmesi için mikroskop altında incelenen preparatların taranarak görüntülerin bir bütün haline getirilmesi ve bilgisayar ortamına aktarılması amacıyla mikroskop görüntüleme sistemi tasarlanmıştır. Mikroskop görüntülerinden beyaz kan hücrelerini bölütlemek, beyaz kan hücrelerini çekirdek ve sitoplazma olarak ayırmak için K-ortalama algoritması kullanılmaktadır. Çekirdek ve sitoplazmayı birbirinden ayırırken hücreler alt görüntülere ayrılmadan görüntü bir bütün olarak işlenmektedir. Birbirine temas eden hücreler işaretçi kontrollü su-seddi algoritması kullanılarak başarılı bir şekilde ayrıştırılmaktadır. Elde edilen hücrelerin birçok özniteliği çıkartılmış ve en iyi sonucu veren öznitelikler belirlenerek bu hücreler destek vektör makineleri ile sınıflandırılmaktadır. Bu çalışmada 410 adet beyaz kan hücresinden farklı kombinasyonlarda eğitim ve test veri setleri elde edilmiştir. Destek vektör makineleri, test setindeki 87 hücrenin 3 tanesini yanlış sınıflandırarak %96,6 başarı ile en iyi sonucu vermektedir.

Özet (Çeviri)

In this study, acute lymphocyte leukemia scanning was performed by image processing method. Matlab image processing tool as software, 108 microscope images as the data set were used. The microscope imaging system was designed for the scanning of the preparations examined under the microscope, the combining of the obtained images as a whole and transferring them to the computer. K-mean algorithm was used to segment white blood cells from the microscope images and to separate the white blood cells into the core and cytoplasm. While separating the nucleus and the cytoplasm from each other, the cells are processed as a whole, without dividing into sub-images. The cells in contact with each other were successfully separated using the pointer-controlled water-beam algorithm. Many Eigen values of the obtained cells were extracted and these cells were classified with support vector machines by identifying the best results. In this study, data sets were obtained from 410 white blood cells in different combinations. Support vector machines misclassified 3 of 87 cells in the test set and gave the best result with 96.6% success.

Benzer Tezler

  1. Sayısal haritalama teknikleri kullanılarak DNA dizilimleri üzerinden lösemi hastalığının temel türlerinin yapay zeka tabanlı algoritmalar ile sınıflandırılması

    Classification of main types of leukemia disease with artificial intelligence-based algorithms on the DNA sequences using digital mapping techniques

    FATMA AKALIN

    Doktora

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. NEJAT YUMUŞAK

  2. Proposing efficient CNN models for the detection of acute lymphoblastic leukemia (ALL) using transfer learning

    Transfer öğrenmeyi kullanarak lenfoblastik löseminin (tümü) tespiti için verimli bir CNN modeli önerilmesi

    HEKMA IBRAHIM ABED

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ADNAN SAHER MOHAMMED AL-AJEELI

  3. Bilgisayar destekli eksternal fiksatör (spider frame) uygulamalarımız

    Computer aided circuler external fixator (spider frame) applications

    MEHMET SELÇUK SAYGILI

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2014

    Ortopedi ve TravmatolojiSağlık Bakanlığı

    Ortopedi ve Travmatoloji Ana Bilim Dalı

    DOÇ. DR. CEM ZEKİ ESENYEL

  4. İskemik inmenin medikal taramalar üzerinde derin öğrenme yöntemleri ile tespiti

    Detection of ischemic stroke on medical scans using deep learning methods

    MERVE BALABAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBilecik Şeyh Edebali Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. EMRE DANDIL

  5. Akut pulmoner emboli tanılı hastalarda mortalite prediktörü olarak kardiyogonyometrinin yeri

    The relationship of cardiogoniometry as a mortality predicter in patients with acute pulmonary embolism

    MURAT BALCIOĞLU

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2021

    İlk ve Acil YardımSağlık Bilimleri Üniversitesi

    Acil Tıp Ana Bilim Dalı

    DOÇ. DR. ABDULLAH ALGIN