Geri Dön

On improving the performance of repetitive learning controllers

Yinelemeli öğrenmeli denetleyicilerin başarımlarının iyileştirilmesi

  1. Tez No: 563670
  2. Yazar: NECATİ ÇOBANOĞLU
  3. Danışmanlar: PROF. DR. ENVER TATLICIOĞLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: İzmir Yüksek Teknoloji Enstitüsü
  10. Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 58

Özet

Robotik sistemler önceden tanımlanmıs¸ tekrarlayan görevler için sıklıkla tercih edilmektedirler. Neredeyse tüm seri üretim yapan fabrikalar bu robotik sistemleri tekrar tekrar uygulanması istenilen görevler için kullanmaktadırlar. Bu sistemlerde denetleyici tasarımı bazı zorluklar, eksiklikler ve/veya periyodik hareketten kaynaklı bozucu etkenler içerebilir. Maliyeti azaltmanın onemi göz önününde bulundurularak robotik sistemlerdeki algılayıcı kullanımı azaltılmalıdır. Bu tezin ilk bolümünde, üstte belirtilen sistem kısıtları altında, periyodik hareket eden robot sistemi için, yapay sinir ağı entegre edilmiş, modelden bağımsız, tüm durum geri beslemeli, yinelemeli öğrenmeli denetleyici tasarlanmıştır. Sistem kararlılığı, Lyapunov tabanlı kararlılık analizi yöntemleri aracılığıyla sağlanmıştır. Tasarlanan denetleyicinin baiarımı sayısal benzetimler ve deneyler aracılığıyla gösterilmiştir. Tezin ikinci bölümünde, üstteki kısıtlara ek olarak eklem hızlarının da ölçülememesi göz önüne alınarak, yapay sinir ağıyla entegre edilmiş çıkıs geri beslemeli yinelemeli öğrenmeli denetleyici tasarlanmıştır. Tasarlanan denetleyicinin başarımı sayısal benzetimler aracılığıyla gösterilmiştir.

Özet (Çeviri)

Robot manipulators are widely used to perform pre–defined tasks repetitively. Nearly all of the mass production factories use the robot manipulators to perform specific operations over and over again. In such a system, the control design may contain some difficulties, unavailabilities and/or there would be additive disturbances due to the periodic motion. Moreover, cost reduction may be vital, hence sensor usage has to be reduced. In the first part of this thesis, to address those restrictions, a model free full state feedback repetitive learning controller which is fused with a one–layer neural network is proposed for robot manipulator which performs a periodic motion. Stability of the system is ensured via Lyapunov based techniques. Numerical simulations and experimental results are introduced to demonstrate the performance of the proposed controller. In the second part of the thesis, under the additional constraint that velocity measurements being unavailable, output feedback repetitive learning controller fused with a neural network term is investigated. The dynamic model of the robot manipulator is again considered as uncertain to avoid its usage as part of the control design, and the reference position vector is still considered to be periodic. The stability of the closed loop system is investigated via Lyapunov based techniques. Numerical simulations are added to demonstrate the proposed controller performance.

Benzer Tezler

  1. Beceri transferinde antrenör ve dijital platformun etkisi: Yüzme sporunda çıkış tekniğinin öğretilmesi

    The effect of trainer and digital platform on skill transfer: Teaching the start technique in swimming sport

    MÜCAHİT KUTAY GÖRENLER

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Eğitim ve ÖğretimEge Üniversitesi

    Beden Eğitimi ve Spor Ana Bilim Dalı

    DOÇ. DR. AYŞE MELİHA CANPOLAT

  2. Derin öğrenme tabanlı süper çözünürlük teknikleri kullanarak JPEG sıkıştırma kaybının iyileştirilmesi

    Recovering JPEG compression loss via deep learning-based super resolution techniques

    MUHAMMET BOLAT

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilişim Uygulamaları Ana Bilim Dalı

    PROF. DR. LÜTFİYE DURAK ATA

    DR. NURULLAH ÇALIK

  3. Train set complexity tunning for imbalance learning

    Dengesiz öğrenme için eğitim seti karmaşıklığının ayarlanması

    MEHMET ULAŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DR. MEHMET ALİ ERGÜN

  4. Hdaru-net tabanlı derin öğrenme yaklaşımın tıbbi görüntülerdeki performansı: Adenoid hipertrofisi ve cilt lezyonları üzerine bir inceleme

    Performance of the hdaru-net based deep learning approach on medical images: A study on adenoid hypertrophy and skin lesions

    SEDAT ÖRENÇ

    Doktora

    Türkçe

    Türkçe

    2025

    Elektrik ve Elektronik MühendisliğiDicle Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET SİRAÇ ÖZERDEM

    DOÇ. DR. EMRULLAH ACAR

  5. Difüzyon ağları ile görüntü rekonstrüksiyonu ve restorasyonu

    Image reconstruction and restoration with diffusion networks

    ONUR PARAPAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. ENDER METE EKŞİOĞLU