Computational investigation of turbulent blood flow and hemolysis in biomedical devices
Başlık çevirisi mevcut değil.
- Tez No: 602501
- Danışmanlar: DR. DIMITRIOS V. PAPAVASSILIOU
- Tez Türü: Doktora
- Konular: Biyomühendislik, Tıbbi Biyoloji, Bioengineering, Medical Biology
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2015
- Dil: İngilizce
- Üniversite: University of Oklahoma
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 189
Özet
Özet yok.
Özet (Çeviri)
Turbulent blood flow in medical devices contributes to blood trauma, yet the exact mechanism(s) have not been fully elucidated. Local turbulent stresses, viscous stresses, and the rate of dissipation of the turbulent kinetic energy have been proffered as hypotheses to describe and predict blood damage. In this work, simulations of experiments in a Couette flow viscometer, a capillary tube, and a jet were used to examine extensive properties of the turbulent flow field and to investigate contributing factors for red blood cell hemoglobin release in turbulence by eddy analysis. Moreover, flows in a Couette viscometer and a capillary tube were simulated to investigate the impact of Reynolds and viscous stresses on hemolysis prediction using computations. Also, the applicability of four different hemolysis power law models for the capillary tube flow was tested as a function of area averaged and time averaged Reynolds stresses, viscous, total, and wall shear stresses. Finally, the size of Kolmogorov scale eddies was used to define a turbulent flow extensive property, and a new hemolysis model was proposed. This empirical model can work well with devices that exhibit different exposure times and flow conditions. It was found that hemolysis occurred when dissipative eddies were comparable in size to the red blood cells. The Kolmogorov length scale was used to quantify the size of smaller turbulent eddies, indicating correspondence of hemolysis with number and surface area of eddies smaller than about 10 m. There was no evidence of a threshold value for hemolysis in terms of Reynolds and viscous stresses. Therefore, Reynolds and viscous stresses are not good predictors of hemolysis. In the case of power law models, area averaged Reynolds stress with the Zhang power law model gave the smallest error.
Benzer Tezler
- Koroner arterlerde kan akışının çok fazlı etkilerinin deneysel ve sayısal incelenmesi
Experimental and numerical investigation of multiphase effects of blood flow in coronary arteries
ORHAN YILDIRIM
Doktora
Türkçe
2023
KardiyolojiAtatürk ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DOÇ. DR. ŞENDOĞAN KARAGÖZ
- Fluid flow in cardiovascular devices and surgical pathways
Kalp-damar cihazlarinda ve cerrahi konstrüksüyonlarda akışkanlar mekaniği
REZA RASOOLI
Doktora
İngilizce
2021
Makine MühendisliğiKoç ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. KEREM PEKKAN
- Rupture status investigation of patient specific cerebral aneurysms by analysing hemodynamic factors using computational fluid dynamics
Hesaplamalı akışkanlar dinamiği kullanarak hemodinamik faktörlerin analizi ile hastaya özgü beyin anevrizmalarının yırtılma durumu incelemesi
GÜLBAHAR MERVE NARİNSES
Yüksek Lisans
İngilizce
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiHesaplamalı Bilimler ve Mühendislik Ana Bilim Dalı
PROF. DR. MUSTAFA SERDAR ÇELEBİ
- İnsan burun boşluğundaki hava akışının sayısal olarak incelenmesi ve sanal septoplasti
Numerical investigation of airflow in the human nasal cavity and virtual septoplasty
CEM TURUTOĞLU
Yüksek Lisans
Türkçe
2018
Biyomühendislikİstanbul Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SERTAÇ ÇADIRCI
- A numerical approach for predicting hemodynamic characteristics of 3D aorta geometry under pulsatile turbulent blood flow conditions using fluid-structure interaction
Sıvı-yapı etkileşimini kullanarak pulsatil türbülanslı kan akışı koşullarında 3B aort geometrisinin hemodinamik karakteristiklerini öngörmek için sayısal bir yaklaşım
AHMET SAAT
Yüksek Lisans
İngilizce
2022
BiyomühendislikBoğaziçi ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. SALİM KUNT ATALIK