Akarsulardaki sediment taşınımının yapay zekâ uygulamaları kullanılarak tespiti
Detection of sediment transport in streams by using artificial intelligence applications
- Tez No: 607810
- Danışmanlar: DR. ÖĞR. ÜYESİ KEMAL SAPLIOĞLU
- Tez Türü: Yüksek Lisans
- Konular: İnşaat Mühendisliği, Civil Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: Türkçe
- Üniversite: Süleyman Demirel Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 71
Özet
Baraj ve bağlama gibi su yapılarının projelendirilmesinde, hem içme suyu hem de kullanma suyunun temin edilmesi problemlerinde ve akarsuların kirlilik seviyelerinin belirlenmesi gibi çalışmalarda sediment yükünün doğru bir şekilde tahmin edilmesi çok önemlidir. Bu sebeplerden dolayı akarsulardaki sediment miktarının tespiti su kaynakları mühendisliğinde büyük önem taşır. Bu çalışmada, Fırat Havzası'nda bulunan Murat Nehri, Göynük Çayı ve Peri Suyu gibi nehirler sediment taşınımı açısından irdelenmiştir. Bölgede bulunan üç istasyon için yapay sinir ağları (YSA), uyarlamalı ağ tabanlı bulanık çıkarım sistemi (ANFIS), çoklu doğrusal regresyon (MLR) ve Elektrik İşleri Etüt İdaresi (E.İ.E) üs metodu gibi yöntemler denenmiştir. Yapılan uygulamalarda bu üç istasyona ait sediment(Qs), debi(Q), sıcaklık(T) ve yağış(P) verilerinden yararlanılmıştır. Bu veriler kullanılarak üç istasyon için de sediment tahmin modelleri geliştirilmiştir. Bu çalışmada her bir istasyon için üç farklı model oluşturulmuştur. Birinci modelde girdi değişkeni olarak yağışın aynı günkü değeri, debi ve sıcaklık değerleri, çıktı değeri olarak da sediment konsantrasyonu (C) kullanılmıştır. İkinci modelde girdi değişkeni olarak yağışın bir gün önceki değeri, debi ve sıcaklık, çıktı değeri olarak da sediment konsantrasyonu kullanılmıştır. Üçüncü modelde ise girdi değişkeni olarak yağışın aynı günkü değeri, yağışın bir gün önceki değeri, debi ve sıcaklık, çıktı değeri olarak da sediment konsantrasyonu kullanılmıştır. Oluşturulan bu modeller eğitim ve test aşamalarında hem regresyon katsayısı (R2) hem de ortalama yüzde hatası (OYH) bakımından karşılaştırılmıştır. Eğitim ve test aşamalarında en başarılı sonuç yapay sinir ağları(YSA) ve ANFIS modellerinden elde edilmiştir.
Özet (Çeviri)
In the project design of water structures such as dams and regulators, in the problems of providing both drinking water and running water and in studies such as determining the pollution levels of streams, accurate prediction of sediment load is of utmost significance. Therefore, detecting the amount of sediment in streams is vital for water resources engineering. In this study, rivers such as Göynük Stream, Murat River and Peri River on the Euphrates Basin were studied in terms of the subject of sediment transport. For the stations in the region, methods such as artificial neural networks (ANN), adaptive neuro fuzzy inference system (ANFIS), multiple linear regression (MLR) and the base method of electrical power resources survey and development administration (E.P.R.S.) were tested. In the practices for these three stations, sediment (Qs), flow rate (Q), temperature (T) and precipitation (P) data were taken into consideration. By using these data, sediment prediction models were created for these three stations. In this study, three different models were created for each station. In the first model, the value of the precipitation of the same day, flow rate and temperature were used as input variables while sediment concentration (C) was used as the output value. In the second model, the value of the precipitation of the previous day, flow rate and temperature were used as the input variables while sediment concentration was used as the output value. In the third model, the value of the precipitation of the same day, the value of the precipitation of the previous day, flow rate and temperature were used as input variables while sediment concentration was used as the output value. The models were compared during both the training and test phases in terms of both the regression coefficient (R2) and mean percentage error (MPE). In the training and test phases, the most successful result was obtained from the artificial neural networks (ANN) and ANFIS models.
Benzer Tezler
- Ege bölgesi doğal akarsularında katı madde taşınımı için ampirik, regresyon ve yapay zeka yöntemlerinin uygulanması
Application of empirical, regression and artificial intelligence methods for the sediment transport in natural streams of the Aegean region
ASLI ÜLKE
Doktora
Türkçe
2010
İnşaat MühendisliğiDokuz Eylül ÜniversitesiHidrolik Hidroloji ve Su Kaynakları Ana Bilim Dalı
DOÇ. DR. SEVİNÇ ÖZKUL
PROF. DR. GÖKMEN TAYFUR
- Dicle havzasındaki akarsularda sediment taşınımının matematiksel modellerle belirlenmesi
The Determination of sediment transport using mathematical models in rivers of Tigris basin
NECATİ KAYAALP
Yüksek Lisans
Türkçe
2003
İnşaat MühendisliğiDicle Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. NİZAMETTİN HAMİDİ
- Yeşilırmak nehrinde debi-sediment taşınımı ilişkisinin belirlenmesi
Determination of relationship between discharge and sediment transportation in Yeşilırmak river
ŞERİF EKİNCİ
Yüksek Lisans
Türkçe
2022
Eğitim ve ÖğretimBingöl ÜniversitesiToprak Bilimi ve Bitki Besleme Ana Bilim Dalı
PROF. DR. RAMAZAN MERAL
- Evaluation of artificial neural network (ANN) and adaptive neuro based fuzzy inference system (ANFIS) on sediment transport
Anfis ve yapay sınır ağlarını kullanarak sediment taşımının incelenmesi
SAEED VAZİFEHKHAH
Yüksek Lisans
İngilizce
2012
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. ZEKAI ŞEN
- Gediz nehri orta kısmında sediment taşınımının araştırılması
A research study on sediment transport at the central part of Gediz river
YUSUF ŞAHİN
Yüksek Lisans
Türkçe
2006
İnşaat MühendisliğiNiğde Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. NECATİ GÜLBAHAR