Geri Dön

A Markov chain framework for approximation of cycle time in semiconductor manufacturing toolsets

Başlık çevirisi mevcut değil.

  1. Tez No: 622879
  2. Yazar: RAHA AKHAVAN TABATABAEI
  3. Danışmanlar: PROF. DR. DANIŞMAN YOK
  4. Tez Türü: Doktora
  5. Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2011
  8. Dil: İngilizce
  9. Üniversite: North Carolina State University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 85

Özet

Accurate and e¢cient cycle time approximation is a critical issue in semiconductor manufacturing systems (SMS), since it facilitates the subsequent production planning and scheduling activities and helps reduce the overall cycle time. Presently computer simulation is a common approach to cycle time approximation and performance analysis in SMS. Simulation models however, have several inherent short-comings, and it can be di¢cult and time-consuming to use such models to explore various what-if questions. Compared with simulation models, analytical approaches based on queuing theory can be much faster in achieving reasonable results, and they typically provide more insights for performance improvement. But in the context of the SMS, performance of the queuing models has not been satisfactory due to inaccurate results. We believe that a major cause of this poor performance is the application of operational rules in SMS. These rules are typically invented by line managers so as to interfere with various components of the system such as the arrival process, the service process, and the repair process, in an attempt to increase the speed of the production áow. Deployment of such rules, however, creates dependencies among these components of the system which are typically not captured by classical queuing models. This, in turn, could render the results obtained via these models somewhat inaccurate and unsatisfactory. In this dissertation we propose a Markov chain framework to model the behavior of a toolset (workstation) in SMS under various operational rules, and employ this model to approximate, with a relatively high degree of accuracy, the long-run average cycle-time of jobs at the toolset. To this end, we Örst develop a basic state-dependent Markov chain model for an SMS toolset. In this model we assume that all random components of the system, i.e., the inter-arrival time, the service time, the time between failures, and the repair time, are exponentially distributed. The state of this model is deÖned by a two dimensional vector consisting of the current number of active servers and the WIP level in the toolset, and the transition rates between the states are determined based on the operational rules adopted for the workstation. Given the transition rates we solve the balance equations of the Markov chain to calculate the steady state probabilities for this system.

Özet (Çeviri)

Özet çevirisi mevcut değil.

Benzer Tezler

  1. Quality of service analysis for slotted optical burst switching networks

    Dilimli optik çoğuşma anahtarlamalı ağlarda hizmet niteliği çözümlemesi

    ONUR ÖZTÜRK

    Yüksek Lisans

    İngilizce

    İngilizce

    2008

    Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. EZHAN KARAŞAN

  2. Improved state estimation for jump Markov linear systems

    Markov atlamalı doğrusal sistemler için geliştirilmiş durum kestirimi

    UMUT ORGUNER

    Doktora

    İngilizce

    İngilizce

    2006

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MÜBECCEL DEMİREKLER

  3. Hedging performance of utility indifference pricing of european call options

    Avrupa tipi satın alma opsiyonu fayda kayıtsızlığı fiyatlamasının korunma performansı

    CAN KÖROĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    MaliyeOrta Doğu Teknik Üniversitesi

    Kriptografi Ana Bilim Dalı

    DOÇ. DR. ALİ DEVİN SEZER

  4. Markov chain Monte Carlo Algorithm for Bayesian Policy Search

    Bayes Politika Arama için Markov Zinciri Monte Carlo Algoritması

    VAHID TAVAKOL AGHAEI

    Doktora

    İngilizce

    İngilizce

    2019

    Mekatronik MühendisliğiSabancı Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    Assoc. Prof. Dr. AHMET ONAT

    DR. SİNAN YILDIRIM

  5. Stochastic modeling with continuous feedback Markov fluid queues

    Sürekli geribeslemeli Markov akışkan kuyruklarla rassal modelleme

    MEHMET AKİF YAZICI

    Doktora

    İngilizce

    İngilizce

    2014

    Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. NAİL AKAR