Geri Dön

Çok katlı çelik bir büro binasında taşıyıcı sistem seçimi ve konstrüktif esaslar

Multi - storey steel office building

  1. Tez No: 66606
  2. Yazar: MURAT IŞIK
  3. Danışmanlar: PROF. DR. ALPAY ÖZGEN
  4. Tez Türü: Yüksek Lisans
  5. Konular: İnşaat Mühendisliği, Civil Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1997
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Yapı Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 98

Özet

ÖZET Çok katlı çelik büro binalarında ekonomik taşıyıcı sistem seçimi ve konstrüktüf prensiplerle ilgili kriterlerin ele alınması ve seçilen iki farklı taşıyıcı sistem için yapılan incelemeler çalışmanın esasını oluşturmaktadır. Çelik büro yapılarında taşıyıcı sistemler, rijit çer çeveli sistemler, düşey kafes kirişli sistemler ve çekirdekli sistemler olmak üzere üç grup altında incelenerek, taşı yıcı sistemlerin seçimine etki eden eleman enkesitleri ve birleşimler verilmiş olup, konstrüktüf esaslara deginilmeye çalışılmıştır. Her iki taşıyıcı sistemin çözümünde de matris deplasman yöntemine göre hazırlanmış bir bilgisayar programı kullanılmıştır. Statik çözümler iki yükleme olarak yapılmıştır. Dinamik çözümlerde ise yapının İlk on modu esas alınmış olup mod süperpozisyonu metoduna göre kesit tesirleri hesaplanmıştır. Bilgisayar çıkışlarından elde edilen kesit tesirleri kullanılarak statik ve dinamik çözümler arasında bir mukayese yapılmıştır.

Özet (Çeviri)

SUMMARY In this study, statically two different structural systems of muiti - storey steel office buildings have been analysed and compared according to their material expenses and properties. The first system is a rigid frame system in both directions, the second consists of bracing frames considered in the suitable axes. In introduction, the structural systems have been classified into three main group as rigid frames, bracing frames and system with cores and then explained extensivly. Connections and cross section types of structural members that are widely used and applied in steel office structures have also been explained. In brief study, these systems have been structurally analysed under earthquake and wind effects in both directions. Earthquake responses have been computed by both static and dynamic methods while wind effect has been taken as the static forces. Equivalent static earthquake forces are calculated according to the Earthquake Code of Turkey for Static Analysis Method. The acceleration spectrum curve is taken in dependence of the earthquake zone that the structure will be planned to be built. Static and dynamic analysis have been performed by using the computer program that can execute three dimensional structural analysis; the structural systems have been compared to each other in respect of economy. Finally static and dynamic solutions have been compared and the results are given in the conclusion part. The acceleration spectrum curve used in the dynamic analysis has been taken from 11] according to the earthquake zone as: S = 1.35 (T,+ QA5P /().05 ammx £ 2.5\/0.Q5~ am.x a T V h V h where, h is the structural damping ratio, a",o.« is the makimum ground acceleration (m/secl XIT* is the critical period of soil (.sec.) T is the natural period of the structure {sec.) The acceleration spectrum curve given above was input numerically in the program as loading data. The first ten successive periods and the corresponding ten mode shapes have been calculated (see Table 1 and 2). TABLE 1. Natural Periods and Acceleration Spectrum Values TABLE 2. Natural Periods and Acceleration Spectrum Values XllThe first table belongs to rigid frame and the second belongs to bracing frames. The Computer Program includes two main options. The static analysis of a structure involves the solutions of the system of linear equations represented by P= [K] d where. [K] is the stiffness matris. £ is the vector of resulting displacements. P is the vector of applied loads. This matrix equation can be written in explicit form as below; Pi- Klldl + Kiadz ++ KjLjdj ++ Klndn ?2= Kaid! + K==>d2- ++ K=jdj ++ K=r-.dm Pi= Kiidi + Kiadz ++ Ktjdi + + Kindr, Pr-.= Krnldl + Kr^zd^ ++ Kr-,jdj +. + Kond, The dynamic analysis method includes the following dynamic methods : steady state analysis eigenvalue analysis response spectrum (seismic) analysis In response spectrum analysis, the dynamic- equilibrium equations associated with the response of a structure to ground motion is given by, IM]X + ICJX + [KJX = -[MIX * xmwhere, LM] is the mass matrix, [C] is the damping matrix, [K] is the stiffnes matrix, is the ground acceleration, X is the structural acceleration, X is t lie structural velocity. X is the structural displacement. The computer program solves this system of equations using the mode superposition response spectrum approach. The ground exitation can occur simultaneously in three directions, namely any two mutually perpendicular directions in the X - Y plane and in the Z direction {see figure 1). The two directions in the X - Y plane are defined as 1 and 2 where direction 1 is defined by the angle a measured counterclockwise from the global X axis. Direction 2 is defined as the direction normal to direction 1. Global referans axi Fig. 1. In this study, ground acceleration has been applied simultaneously in two mutually perpendicular directions in the X-Y plane so the angle * assumud to be zero. xivThe spectrum curves are defined by digitized points of time period versus spectral acceleration. To get the maximum displacements and member forces, first the modal responses associated with a particular direction of excitation are calculated. The modal responses are then combined using the complete quadratic combination technique. The total response is then calculated by summing the response from the three directions by the square root of sum of the squares (SRSS) method. At the end of the study the structural systems have been analysed and the conclusions are below: Braced frame systems play an important role in the multi - storey steel office structures. The horizantal loads as wind and earthquake forces acting on the structures with braced frames are carried by bracing and rigid connections so the structure members can be designed more economicall, even they need more workmanship expenses for the connections. The weight of rigid steel frame system is 14Sü t and braced frame system is 1230 t. The weight of the steel has been reduced approximately %17 by means of bracing. The cross-section of the members is determined by the maximum displacements of the structure under the horizontal forces instead of vertical forces. The maximum displacements must be less than H/300 for earthquake forces and H/500 for wind forces. Where, H is the total height of the system. In the last part of the study, the static and dynamic solutions obtained from the computer have been compared to each other and the general conclusion can be given as follow: The column and beam moments in the static solution are bigger than the dynamic solutions in both systems. The axial forces in static solutions are bigger than the axial forces in dynamic solutions. xv

Benzer Tezler

  1. Kolonları dipten ankastre çok katlı bir çelik yapının zaman tanım alanında karşılaştırmalı boyutlandırılması

    High rise steel structure having rigid supported has been designed according to time history analysis

    HAKAN ORAKOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2009

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÜLİZ BAYRAMOĞLU

  2. Türkiye İş Bankası mimarlığı ve Çelik Alatur'un çalışmaları

    Türkiye İş Bankası architecture and the architectural works of Çelik Alatur

    TAYBUĞA AYBARS MAMALI

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    PROF. DR. MEHMET MURAT GÜL

  3. Çok katlı çelik bir yapının EC 3 ve Türk standartlarına göre boyutlandırılması ve karşılaştırılması

    Designing of a multi storey steel structure according to EC 3 and comparison with Turkish standarts

    MURAT KARACA

    Yüksek Lisans

    Türkçe

    Türkçe

    2005

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF.DR. ALPAY ÖZGEN

  4. Çelik bir yapıda deprem yüklerinin çelik çaprazlar veya betonarme perdelerle taşınması

    Behaviour of steel braced frames or concrete shear wall under earthquake loads for a steel structure

    DİLEK CELEP

    Yüksek Lisans

    Türkçe

    Türkçe

    2007

    Mühendislik Bilimleriİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    Y.DOÇ.DR. HALET ALMILA BÜYÜKTAŞKIN

  5. Çelik yapıların projelendirilmesinde kullanılan emniyet gerilmeleri ve taşıma gücü yöntemlerinin karşılaştırmalı olarak incelenmesi

    Comparison of the methods based on the allowable stress design and load resistance factor design used in the steel structures design

    ERSİN AYDEMİR

    Yüksek Lisans

    Türkçe

    Türkçe

    2002

    İnşaat MühendisliğiKaradeniz Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. METİN HÜSEM