IoT mesh network tasarımı
IoT mesh network design
- Tez No: 668789
- Danışmanlar: PROF. DR. ABDÜL HALİM ZAİM, DOÇ. DR. MUHAMMED ALİ AYDIN
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: Türkçe
- Üniversite: İstanbul Ticaret Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 120
Özet
Bu çalışmada, Kablosuz Algılayıcı Ağlarda (KAA) enerji verimliliğini artırmak için dört tür algoritma araştırılarak önerilmiştir. KAA'larda kümeleme, sensör düğümlerin ve ağın aktif yaşam süresini uzatmak için etkili bir yaklaşım olarak kabul edilmektedir. Bu çalışmada, iki boyutlu düzlem alanı 30 m^2aralıklarla kümelere ayrılmıştır. Her kümede, küme merkezine en yakın olan ve en yüksek artık enerjiye sahip olan sensör düğümü, Küme Başı (KB) olarak seçilir. Çalışmamızda ek olarak KB'lerin enerji tüketimini azaltmak için Mobil Baz İstasyon (MBİ) kullanılmıştır. MBİ, en yakın kümeden başlayarak tüm kümeleri gezerek KB'lerden veri toplamaktadır. Önerilen ilk modelde, KB seçimi, açgözlü yaklaşım kullanılarak gerçekleştirilmekte ve MBİ'nin kullandığı güzergah listesi, Gezgin Satıcı Problemi (GSP) kullanılarak hesaplanmaktadır. İkinci modelde, KB seçimi Yapay Sinir Ağı (YSA) kullanılarak gerçekleştirmekte, MBİ'nin kullandığı güzergah listesi, GSP kullanılarak hesaplanmaktadır. Üçüncü modelde, KB seçimi, açgözlü yaklaşım kullanılarak gerçekleştirmekte ve MBİ'nin kullandığı güzergah listesi, Genetik Algoritma (GA) kullanılarak hesaplanmaktadır. Dördüncü modelde, KB seçimi YSA kullanılarak gerçekleştirilmekte ve MBİ'nin kullandığı güzergah listesi için GA yöntemi kullanılmaktadır. Modellerimizi, tüm sensör düğümlerin enerjilerinin bittiği tur değerine, ağda aktif düğüm sayısının bittiği duruma kadar ağın çalışma sürelerine ve tur başına ağın harcadığı enerji değerlerine göre karşılaştırdık. Simülasyon sonuçları, önerilen modellerin enerji verimliliğini artırdığını ve ağ ömrünü uzattığını göstermektedir.
Özet (Çeviri)
In this study, we propose and investigate four types of algorithms for improving energy efficiency in Wireless Sensor Networks (WSN). Clustering sensors in WSN's is considered an effective approach to prolonging network lifetime. In this study, we divide the study area into clusters at 30 m^2 intervals. In each cluster, the sensor that is the closest to the cluster center and has the highest residual energy is selected as the Cluster Head (CH). In addition, a Mobile Sink (MS) is used to reduce the energy consumption of the CHs. The MS travels to all clusters, starting with the nearest cluster and collects data from the CHs. In the first model, CH selection is performed using a greedy approach and the MS route is calculated using a Travelling Salesman Problem (TSP). In the second model, CH selection is performed using an Artificial Neural Network (ANN), and the MS route is calculated using a TSP. In the third model, CH selection is performed using a greedy approach, and the MS route is calculated using a Genetic Algorithm (GA). In the fourth model, CH selection is performed using an ANN, and the MS route is calculated using a GA. We compared our models with the energy-efficient scalable routing algorithm by the all nodes die, network operation time and the energy consumption of the network for each round condition. The simulation results demonstrated that the proposed models improved the energy efficiency and extended the network lifetime.
Benzer Tezler
- Monitoring system based on bluetooth mesh sensor network
Başlık çevirisi yok
BILAL HASHIM HAMEED
Yüksek Lisans
İngilizce
2019
Elektrik ve Elektronik MühendisliğiAltınbaş ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SEFER KURNAZ
- AUTHENTICATION IN MESH NETWORKING
Başlık çevirisi yok
ATTIQ UR REHMAN KHALID
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÜsküdar ÜniversitesiFen Bilimleri ve Teknolojileri Ana Bilim Dalı
DR. FATİH TEMİZ
- Using network-on-chip structure in deep neural network accelerator design
Derin sinir ağı hızlandırıcı tasarımlarında yonga-üstü-ağ yapısının kullanımı
FURKAN NACAR
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. SÜLEYMAN TOSUN
- Akıllı şehirlerde akıllı sokak aydınlatma kontrolü
Smart street lighting control in smart cities
MUHAMMED SAMİ ALVISI
Yüksek Lisans
Türkçe
2023
Mekatronik MühendisliğiTokat Gaziosmanpaşa ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. LEVENT GÖKREM
- Doğal afet durumlarında tasarsız ağlar(ad-hoc) ve ıot ağlarıyla krıtik iletişimin gerçekleştirilmesi
Performing critical communication with ad-hoc networks and iot networks in case of natural disasters
EMRAH EREN
Yüksek Lisans
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilişim Sistemleri Ana Bilim Dalı
PROF. DR. ÖMER FARUK BAY