Finansal başarısızlığın yapay sinir ağları ve çok değişkenli istatistiksel analiz teknikleri ile tahmin edilmesi: Borsa İstanbul'da bir uygulama
Estimation of financial failure by artificial neural networks and multivariate statistical analysis techniques: An application in the İstanbul Stock Exchange
- Tez No: 725360
- Danışmanlar: DOÇ. DR. ZEHRA BERNA AYDIN
- Tez Türü: Yüksek Lisans
- Konular: Ekonometri, İstatistik, Econometrics, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: Türkçe
- Üniversite: Bursa Uludağ Üniversitesi
- Enstitü: Sosyal Bilimler Enstitüsü
- Ana Bilim Dalı: Ekonometri Ana Bilim Dalı
- Bilim Dalı: İstatistik Bilim Dalı
- Sayfa Sayısı: 159
Özet
Finansal başarısızlık, işletmelerin faaliyetlerini sürdürebilmesi açısından oldukça önemli bir konudur. İşletmeyi ve işletmenin alacaklıları, çalışanları, tedarikçileri, tüketicileri başta olmak üzere tüm paydaşlarını olumsuz etkilemektedir. Bu noktada işletme ve paydaşlarının finansal başarısızlığın olumsuz etkilerine maruz kalmaması için, finansal başarısızlığı öngören tahmin modelleri geliştirilmektedir. Finansal başarısızlık tahmin modelleri, başarısızlığın iflas ile sonuçlanmasını engelleyici niteliktedir. Bu araştırmanın amacı, lojistik regresyon analizi ve yapay sinir ağları yöntemi ile Borsa İstanbul'da imalat sektöründe işlem gören işletmelerin finansal başarısızlıklarını bir yıl önceden öngörebilecek tahmin modelleri geliştirmek ve geliştirilen modellerin tahmin güçlerinin karşılaştırılması ile uygun modeli belirlemektir. Araştırma kapsamında, Borsa İstanbul'da işlem gören 140 imalat sektörü işletmesinin 2015 – 2020 yıllarına ait gelir tablosu ve bilançolarından yararlanarak hesaplanan finansal oranlar modellerde bağımsız değişken olarak kullanılmıştır. Lojistik regresyon analizi IBM SPSS Statistics 21, yapay sinir ağları yöntemi ise MATLAB (R2021b) programı kullanılarak gerçekleştirilmiştir. Araştırma sonucunda yapay sinir ağları modelinin(%95,7), lojistik regresyon modeline(%92,1) kıyasla finansal başarısızlığı bir yıl önceden tahmin etme gücünün daha yüksek olduğu sonucuna ulaşılmıştır.
Özet (Çeviri)
Financial failure is a very important issue for in terms of businesses to continue their activities. Especially it negatively affects the business and bussiness's creditors, employees, suppliers, consumers and all stakeholders. At this point, estimation models that predict financial failure are developed so that the business and its stakeholders are not exposed to the negative effects of financial failure. Financial failure prediction models, it prohibitive attribute the failure to result in bankruptcy. The aim of this reseach is to develop forecasting models that can predict the financial failure of companies traded in the manifacturing sector on the Istanbul stock exchange one year in advance, using logistic regression analysis and artifical neural networks method and to determine the appropriate model by comparing the predictive power of the developed models. Within the scope of the research, the financial ratios calculated by using the income statements and balance sheets of 140 manufacturing sector enterprises traded in the Istanbul stock exchange for the years 2015 - 2020 were used as independent variables in the models. Logistic regression analysis was performed using IBM SPSS Statistics 21, and artificial neural network method was performed using MATLAB (R2021b) program. As a result of the research, it was concluded that the artificial neural network model (95.7 %) had a higher power to predict financial failure one year in advance compared to the logistic regression model (92.1 %)
Benzer Tezler
- Finansal başarısızlığın öngörülmesinde yapay sinir ağı kullanımı ve ampirik bir uygulama
Financial failure prediction using artificial neural network and an emprical application
BİROL YILDIZ
- Global kriz dönemi sonrası finansal başarısızlığın öngörüsünde yapay sinir ağları ve logit modellerinin karşılaştırılması
Post- period global crisis the comparison of artificial neural networks and logit models in prediction of financial failure
TUĞBA GÖKDEMİR
Yüksek Lisans
Türkçe
2015
EkonometriMarmara ÜniversitesiEkonometri Ana Bilim Dalı
PROF. DR. EBRU ÇAĞLAYAN AKAY
- İşletmelerde finansal başarısızlık tahmini ve yapay sinir ağları modelinin kullanımı: Borsa İstanbul'da bir uygulama
Financial failure estimation on enterprises and utilization of the model artificial neural networks: An application to Borsa Istanbul
MEHMET NURİ SALUR
- Finansal başarısızlık tahmininde geleneksel istatistiki yöntemlerle yapay sinir ağlarının karşılaştırılması ve sanayi işletmeleri üzerinde uygulama
Comparison of traditional statisticial techniques with artificial neural networks in financial failure prediction and an application on industry firms
TALİP TORUN
- İşletmelerde finansal başarısızlık tahmininde veri madenciliği yöntemlerinin karşılaştırılması: BIST'de bir uygulama
A comparison of data mining methods in financial failure prediction of businesses: An application in BIST
BARIŞ AKSOY