Robotik uygulamalar için oto kodlayıcı kullanılarak denetimsiz arkaplan çıkarılması
Unsupervised background extraction using autoencoders for robotic applications
- Tez No: 731427
- Danışmanlar: DR. ÖĞR. ÜYESİ HÜSEYİN DOĞAN
- Tez Türü: Yüksek Lisans
- Konular: Mekatronik Mühendisliği, Mechatronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: Türkçe
- Üniversite: Selçuk Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Mekatronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 54
Özet
Robotik sistemlerde görüntü tabanlı kontrol günümüzde klasik görüntü işleme yöntemleri veya yapay zekâ teknikleri kullanılarak çözülebilmektedir. Modern yapay zekâ teknikleri ile geliştirilen görüntü tabanlı kontrol sistemleri, geliştirme maliyetini düşürmüş, tepki süresini azaltmış ve klasik yöntemlerle çözümü uygulanabilir olmayan problemlerin çözümüne yeni kapılar açmıştır. Görüntü tabanlı kontrolde görüntüdeki nesnelerin konum bilgilerini elde etme ve nesneleri sınıflandırma gibi amaçlara yönelik olarak arka plan elde etme işlemi yapılması gereklidir. Bir görüntünün arka planını elde etme işlemi, ön plan cisimlerinin özelliklerini çıkarma ve arka plan değiştirme gibi birçok problemin çözümünde kullanılmaktadır. Fakat ışığın dinamik olduğu, arka plana ait yarı hareketli cisimlerin bulunduğu veya gölgelerin değiştiği görüntülerde arka plan elde etme işlemi konusunda çalışmalar olsa bile, bu halen zorlu bir problemdir. Sözü geçen ortamlarda üretilen görüntülerin arka planlarının elde edilmesinin klasik görüntü işleme yöntemleri veya denetimli öğrenme yöntemleri kullanarak çözülmesi mümkün olsa bile hiç pratik veya verimli olmayacaktır. Bundan dolayı bu problemler genellikle büyük veri setleri ile denetimsiz yöntemler kullanılarak çözülmektedirler. Arka plan elde etmede denetimsiz yöntemlerin yaklaşımı cisimlerin görüntüler arasındaki hareketlerini değerlendirerek ön plan ve arka plan cisimlerini birbirinden ayırmaktır. Yani cisimlerin görüntüler arasındaki akışkanlıklarına göre sınıflandırmaya yönelik yöntemlerdir. Bu çalışmada kapalı devre bir robotik sistem geliştirilerek görüntüler üretilmiş ve bu görüntülerin arka planının elde edilmesi işleminin denetimsiz olarak öğrenilmesi otomatikleştirilmiştir. Elde edilen görüntülerdeki robot dışındaki cisimlerin akışkanlıkları düşük olduğundan mevcut yöntemlerin yeterli olmayacağı öngörülmüş ve yeni bir yaklaşımla bir oto kodlayıcı eğitilmesi önerilmiştir. Geliştirilen yöntem denetimsiz öğrenme için modern standartlarda başarı göstermiştir.
Özet (Çeviri)
In modern times vision-based control in robotic systems could be achieved by the means of classical image processing methods as well as artificial intelligence techniques. Vision-based control developed using modern artificial intelligence techniques are less expensive, more robust and much more feasible for some problems compared to classical methods. It's crucial to use background extraction to obtain certain information such as objects' location or class when implementing vision-based control in robotics. Background extraction is used to solve many different problems such as foreground object detection or background replacement. However, it is still a challenge to extract a background from an image or a frame which was captured in an environment with dynamic lighting, moving background objects or moving shadows even if there are some papers focusing on this topic recently. Background extraction within mentioned environments would not be practical or efficient using classical image processing approaches or supervised learning methods even if it is possible. That is why there these problems are solved using big datasets and unsupervised learning methods. Approach of unsupervised methods to this problem is to use the liquidity of the foreground between images or frames to extract the background. In this study a closed loop robotic system has been developed to generate images and a method to extract the background with unsupervised learning was developed. Due to the low liquidity of some foreground objects between images, it was foreseen that current methods would not work with our dataset and a novel approach using autoencoders in a specific way was proposed. Proposed method was demonstrated to work up to modern standards.
Benzer Tezler
- Evrimsel hesaplama tabanlı kamera kalibrasyonu
Evolutionary computing based camera calibration
MEHMET AKİF GÜNEN
Doktora
Türkçe
2021
Jeodezi ve FotogrametriErciyes ÜniversitesiHarita Mühendisliği Ana Bilim Dalı
PROF. DR. ERKAN BEŞDOK
- Derin öğrenme tabanlı geçek zamanlı kimliklendirme sistemi
Deep learning based real time identification system
MEHMET FATİH ÖZDEMİR
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİnönü ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. DAVUT HANBAY
- Robotik uygulamalar için kapasitif rotary enkoder geliştirilmesi
Development of capacitive rotary encoder for robotic applications
ALİ TAHİR KARAŞAHİN
Yüksek Lisans
Türkçe
2018
Elektrik ve Elektronik MühendisliğiNecmettin Erbakan ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET KARALI
- Robotik uygulamalar için elektromekanik enerji dönüşümüyle yapay kas sisteminin geliştirilmesi
Development of artificial muscle system with electromechanical energy conversion for robotic applications
SAMET ÖZCAN
Yüksek Lisans
Türkçe
2019
Makine MühendisliğiFırat ÜniversitesiMakine Mühendisliği Teknolojileri Ana Bilim Dalı
DOÇ. DR. ENGİN ÜNAL
- Command generation techniques for elimination of residual vibrations for robotic applications
Robotik uygulamalar için artık titreşimin eliminasyonunda komut üretim teknikleri
ÇAĞLAR CONKER
Doktora
İngilizce
2016
Makine MühendisliğiÇukurova ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. HAKAN YAVUZ