Geri Dön

Rezistif yüzeyli bir tabakada gömülü silindirik cisimlerin belirlenmesi

Başlık çevirisi mevcut değil.

  1. Tez No: 75385
  2. Yazar: MÜCAHİT ÖZEL
  3. Danışmanlar: PROF. DR. İBRAHİM AKDUMAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1998
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 40

Özet

Bu çalışmada, bir tabaka içindeki gömülü silindirik cisimlere ilişkin bir ters saçılma problemi incelenmiştir. Problemde; tabakanın bir yüzünün kalınlığı ihmal edilebilecek kadar küçük homojen rezistif bir yüzey ile kaplı olduğu düşünülmüştür. Problem önce Green fonksiyonu yardımıyla formüle edilerek bir integral denkleme indirgenmiş, daha sonra bu integral denklem bir maske operatörü tanımlanarak Born yaklaşıklığı altında genelleştirilmiş ART (Algebraic Reconstruction Technique) yöntemiyle çözülmüştür.

Özet (Çeviri)

I. INTRODUCTION This work addresses an inverse scattering problem which aims to determine the geometrical as well as the physical properties of a cylindrical body buried in a layered half-space whose layers are separated by resistive planes. The resistive boundaries lead to a mathematical problem which is not solvable by the classical techniques based on the Fourier transform. To overcome this dificulty, the resulting system of operator equations is solved by using a generalization of the algebraic reconstruction technique. The waves reflected from the resistive boundaries cause the data collected by measurements to contain more information about the object to be determined. Due to large domain of applications such as non-destructive probing, geophysical prospecting, determination of underground tunnels and pipelines etc. the invers scattering problems related to the buried bodies has a particular importance in the inverse scattering theory. In that problems the unknown body is buried, in general, in a known limited host medium whose constitutive parameters differ from those of the surrounding infinite space. Then one tries to determine the geometrical (location and shape) as well as physical properties (constitutive parameters) of the body through the measurements of the scattered field outside the host medium. If the host medium is of finite size, then one can collect maximum data from all the points located around the body. On the contrary, when the host medium is of infinite extend, one has to confine oneself to limited data which can be collected only from accessible points. The cases of bodies buried in a half-space or in a slab are simple example of this kind of problems. The objective of this work is to solve an inverse scattering problem connected with bodies buried in a layered half-space whose layers are separated by resistive planes. The problem may be arisen, for example, if one tries to recover underwater objects lying in the sea or lake from the field measurements performed at the surface of the water or inside the atmosphere. In such a case the bottom surface of the water reservoir is modelled by a resistive boundary condition. For the sake of simplicity we restrict ourselves to case of three layers and cylindrical bodies. We assume also that the layers are non-magnetic and non-conducting simple mediums having different constant permittivities. The material of the cylindrical body is supposed to be local, instantaneous, linear, isotropic and non magnetic, i.e.: its dielectric permittivetiy e(x) and conductivity o(x) are scalafunctions of the space co-ordinates in R2. The problem then consists of finding the functions e(x) and o(x) by using the data collected through measurements along a line in the half-space not containing the body. The body will be illuminated by a plane wave from the same region. 2 FORMULATION OF THE PROBLEM The geometry of the problem is illustrated in figure 1. In this configuration the half-space x2>0, the layer -d0; more precisely, on a certain line x2=l. To this end, one illuminates the body from the accessible region mX2 ea^o.o=0 A. İ observation line eu\xoto=0 resistive plane e u cr=0 -d Figure 1. Geometry of the problem x2>0 by a plane wave (incident wave) whose electric field vector El is parallel to the Ox3 axis, namely E\x)={Q,O,u\x)) (2a)with UHX)^-**^*^^, ^e(p>ie) (2b) where is the incidence angle (see figure 1) and k^ is the wavenumber of the region x2>0. In such a case, the scattered field, say uD(x), which is defined by u(x)=u0(x)+uD(x), where u0(x) is the total field when the body D were absent, satisfies ^D+k\x^uD= -kx v(x)u(x) (2c) and uD(xv -d+0) -uD(xv -d-0) =0 (2d) du du m\x0 dx. £.(xv-d+0)--^(xv-d-o)=-^uD(xv-d+0) dx. R (2e) In the sense of distributions under the radiation condition. In (2.a,c), the functionfc2(;c2) 2 2 2 is equal to k^, kt and k^ in the regions x2>0, -d0 ?j, -d-d (2g) In the following analysis we will try to recover the function v(x) from the scattered filed measurements. By considering the Green's Function of the related problem, say G(x;y), the equation (2c) can be reduced to the solution of the following Fredholm integral equation under the Born approximation; »d(*) =fci2/G(x;^“o(>')vO')^>' (2h)3 THE FIELD u0(x) For the plane wave given by (2a,b) the field «0(x) can be expressed as uQ(x)= -ikffic^cos^^x^a^ T4e -iki(xxoos^l *x^n^ ; x.0(l +Me ^^^ ^sin^l -Me -°M**«> (3b) where A =*0sin +Me ”^i***») -^sin^l -Me“^l (3c) and M=- sin^j i sin(|)2 I sine)), sinek - + i+ £ /? z, z, (3d)4 AN EXPLICIT EXPRESSION OF G(x;y) Consider now the Green function G(x,y) related to (2.c-e). By definition it satisfies AG+kz(x2)G=-Ö(x-y) (4a) and G(xv-d+0;y)-G(xv-d-0;y) (4b) dG BG 'M V-n ^-{xv -d+0;y) -^-(xv -d-0;y)=-pG(xv -d+0;y) (4c) ax2 ox2 K under the appropriate boundary condition. In order to find a suitable expression for G, we consider its Fourier transform with respect to xx, say G(y,x2;y), defined as follows; Ğ(y,x2;y)=fG(xl,x2;y)e'İVXldxl (4d) Then the transformation of (4a) written for y2e(-d,Q) results in solving the following differantial equation under the appropriate boundary and radiaton conditions: ^-Yfc=0 ; x2>0 dxl ¦^-Y?G=-e'vyi8(x2-y2) ; x2e(-d,0) (4e) dxl vG 2a n ^ J - --Y2G=0 ; x2 Yi and Y2 are square root functions Yon/*H^ Yı^^î Y2=1pI? (4f) defined in the complex v -plane such thatY0(0)=-*V Yi(0)=-*p y2(0)=-ik2 (4g) Now its required to know the explicit expression of G for ^>0 only. After some stranghtforward manipulations one gets the following; G^yd^Ş^^^ JoVyA Ya J e ne 7(rt ; XjX), -dXidy, (4İ) 5. AN ART TYPE SOLUTION In the theory we astablished the equation (2h) is first reduced to the solution of a system of linear operator eqations in the form (Arfix^aJxJ, n=\X-N (5a) with 1 -fci (5b) and k2”1 -itf (Mv)j +-J2(Mv)2+-^(M v)3 +-2-52 (Mv)4 ^ * h 3 L^ e ldv (5c)where An is the linear operator corresponding the incidence angle 4>=(J>n> n=l,...N. In these expressions L1, L2, T2n, T3n, are all known functions The functions (Mv)n appearing in (5c) is the two-dimensional Fourier transform of (Mv)(x) evaluated at different spectral points where M is the masking operator defined by (v(;t) ; -d

Benzer Tezler

  1. Dört zamanlı motorların altı zamanlı motorlara dönüşümü için kam mili modifikasyonu

    Camshaft modification for conversion of four-stroke engines to six-stroke engines

    MUHAMMED AKAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Otomotiv MühendisliğiPamukkale Üniversitesi

    Otomotiv Mühendisliği Ana Bilim Dalı

    DOÇ. DR. EMRE ARABACI

  2. Homojen olmayan empedans yüzeylerine ilişkin düz ve ters saçılma problemleri

    Direct and inverse scattering problems related to inhomogeneous impedance boundaries

    ALİ YAPAR

    Doktora

    Türkçe

    Türkçe

    2001

    Elektrik ve Elektronik Mühendisliğiİstanbul Üniversitesi

    PROF. DR. İBRAHİM AKDUMAN

  3. Detection of abnormal skin tissues with impedance mapping approach using EIT techniques

    EIT tekniklerini kullanarak empedans haritalama yaklaşımı ile anormal cilt dokularının tespiti

    BÜŞRA OĞUZHAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik MühendisliğiÇukurova Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MUSTAFA İSTANBULLU

  4. Sıcaklık algılayıcılarının incelenmesi, kalibrasyonu ve cam sanayiinde uygulanması

    A study of temperative sensors, calibration and their application in glass industry

    MUSTAFA ÖZCAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2004

    Elektrik ve Elektronik MühendisliğiMarmara Üniversitesi

    Elektrik Eğitimi Ana Bilim Dalı

    Y.DOÇ.DR. FUAT BÜYÜKTÜMTÜRK

  5. Tümleyen bağlı rezistif anahtarların bellekler ve yapay sinir ağlarında kullanımı

    Complementary resistive switches based memories and artificial neural networks

    ERTUĞRUL KARAKULAK

    Doktora

    Türkçe

    Türkçe

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTrakya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ERDEM UÇAR

    YRD. DOÇ. DR. REŞAT MUTLU