Geri Dön

Çimento hammaddelerinin özellikleri, optimizasyonu ve SURPAC 2000 ile bir saha çalışması

Başlık çevirisi mevcut değil.

  1. Tez No: 75521
  2. Yazar: İSMET GÜÇLÜ KATIRCIOĞLU
  3. Danışmanlar: YRD. DOÇ. DR. HASAN ERGİN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Maden Mühendisliği ve Madencilik, Mining Engineering and Mining
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1998
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Maden Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Kazı Mekanizasyonu Bilim Dalı
  13. Sayfa Sayısı: 173

Özet

Çimento, inşaat malzemelerinin belki de en önemlisidir. Ülkemizde de 1911 yılında Danca'da kurulan ilk çimento fabrikasından bu yana geçen süre içinde, çimento sektöründe büyük gelişmeler kaydedilmiştir. Bugün artık Türkiye, Avrupa'nın önde gelen çimento üreticilerinden biridir. Bu kadar büyük miktarlarda üretim yapan çimento fabrikalarının karşılaştığı sorunlar da aynı derecede büyük olmaktadır. Bu zorlukların en büyüklerinden biri de üretim prosesine uygun hammaddenin sağlanmasıdır. Ulusal ve Uluslararası standartlarla sınırları belirlenmiş olan çimento kalitesinin sağlanması için hammaddenin, günümüzde, kesintisiz ve büyük miktarlarda üretim yapan çimento fabrikalarına devamlı ve belirli normları tutturacak şekilde homojen hale getirildikten sonra verilmesi büyük önem taşımaktadır. Bu amaçla fabrikalara gelen hammaddenin, madencilik aşamasında arzu edilen homojenizasyonu sağlayacak şekilde üretilmesi gerekmektedir. Bu çalışmada, ilk bölümde çimentonun tarih içindeki gelişimi ve Türkiye'de çimento üretiminin perspektifi verilmiştir. İkinci bölümde çimento üretiminde kullanılan, kalker, kil, marn, alçıtaşı, demir, puzolanlar ve yakıt gibi hammaddelerin jeolojik/minerolojik tanımlamaları ve yapıları verildikten sonra, bu hammaddelerin niteliklerinden bahsedilmiş ve Türkiye'deki hammadde kaynaklarının bir envanteri çıkarılmıştır. Daha sonra üçüncü bölümde çimento üretiminin prosesi ve hammaddenin geçirdiği aşamalar, dördüncü bölümde de hammaddenin kimyasal kompozisyonunun, üretim aşamlarından öğütme ve pişirme ile nihai ürün olan beton dayanımına etkisi incelenmiştir. Bu bölümde ayrıca farklı amaçlı çimentoların, kompozisyonları ve özellikleri verilmiştir. Beşinci ve altıncı bölümde EXCEL ve SURPAC 2000 yazılımları ile çimento hammaddesinin üretiminin ve kullanımının optimizasyonu hedeflenmiştir. Bu amaçla; klinkeri oluşturan hammaddelerin kimyasal kompozisyonundan yola çıkarak, önce EXCEL 'de hammaddelerin kalite standartlarını, pişme sırasında oluşan mineral fazlarını, tahmini dayanımları ve istenen kalite modüllerine ulaşmak amacıyla yapılması gereken karışımın yüzdelerinihesaplayan bir tablo hazırlanmış daha sonra da SURPAC 2000 programı kullanılarak, örnek bir sahada kalker, kil ve killi kalker bölümleri tesbit edilerek rezervleri hesaplanmıştır. Ayrıca 10 m'lik aralıklarla oluşturulan kotlarda kalker için CaO içeriğine göre kilin için AI2O3 ve SİO2 içeriklerine göre, çimento üretimi için önemli aralıklara bağlı olarak dağılımlar çıkarılarak, hammadde sahasında üretimin planlanması için gerekli veriler üretilmiştir.

Özet (Çeviri)

Cement is one of the most important material of constructive. Turkey has advanced in cement production since 1911 when the first cement plant was built in Danca. Now, Turkey is a big cement manufacturer of Europe together with Germany and Italy. It is hard to cope with problems of manufacturing of big amount of products such as cement. One of the important problem is to achive optimal raw material composition. The objective of this research is to optimise raw material production and the following stages of production. In the manufacturing process, it is necessary to produce a clinker in which the oxides are almost completely combined as C3S (alite), C2S (belite) and the C3A (ferrite) phase solid solution with a composition usually close to C4AF, leaving a free lime content low enough to produce a sound cement. The objective of the cement manufacturer is to produce a cement, within the constraints imposed by the raw material available and by processing economics, which has the quality demanded by the market. Quality is defined by concrete strength development, workability and cement setting characteristics and will require at least a satisfactory performance in such tests as may be specified in relevant national standards. Raw Materials: All types of limestone used in cement manufacture, have the differences of practical significance, such as crystal size, porosity, hardness, and the content and form of siliceous and argillaceous impurities. Physical properties determine the method of quarrying and the treatment needed to prepare a homogeneous blend with the other raw materials, which is suitable for kiln feed. Minor levels of other components introduced into the clinker by the calcerous component are magnesia and at significantly lower levels zinc, copper, fluoride and phosphate. Magnesia must notexceed 4 % in the cement produced if it is to conform to the British Standard. This limit was introduced to avoid the posibility of producing cement which exhibits unsoundness as a result of delayed periclase hydration, but higher levels have been investigated in countries where low magnesia limestones are in short supply and are permitted by some other national standards. The shales/clays used in cement making are normally a mixture of minerals of the kaolinitic and illitic types with small amounts of montmorillonoids. Those of the kalinite type (two-layer clays) have a silica ratio of only 1-2, while those of the other groups (three-layer clays) have a silica ratio of 2-4. Usually the presence of free silica (frequently as quartz) in the limestone or shale ensures that a mix with a sufficient silica content can be obtained. If this is not the case, then an additional component such as sand is required. The mineralogical composition of the argillaceous component influences the cement manufacturing process in a number of ways. Significant, altough still minor, contents of sweeling clays may be associated with sticky high-moisture deposits. In a slurry, such clays are associated with a significiant increase in the water addition needed for pumping and may also reduce the effectiveness of deflocculating agents used to reduce water requirements. In some cases it may be necessary to increase the quality of the cement or make burning easier by incorporating an additional raw material, perhaps from a distance site. Inevitably, cost limits the scale of such a modification of raw meal composition unless a special cement being made to be sold at a premium price. Examples are: sand or diatomaceous earths (to increase silica ratio); iron oxide or bauxite (to optimise alumina ratio, especially for sulphate-resisting and oilwell cements where this must be low); and china clay (to minimise the iron content for white cement).Cement Production: Crushing is necessary to reduce the quarried materials to a size suitable for storage and blending prior to grinding. The size of crushed material required depends on the type of grinding mill used. Most modern cement plants now use blending stockpiles for the crushed raw material. This provides a buffer store of about 1 week's kiln feed between the intermittent quarrying/crushing operation and the more continuous raw milling stage. The kiln feed must contain a minimum of coarse particles, since these might not fully react during the 20-30 min for which, on average, they pass through the hottest zone of the kiln. Typical upper size limits for combination of a small proportion of coarse material in 30 min at 1400° C in avarage mix are 125 um for limestone and 44 urn for quartz or silica sand. The raw-milling system is designed to grind the raw materials to a powder fine enough for burning in the kiln, typically providing an over-sized residue of below 15 % on a 90 um sieve. The stockpiled raw materials plus any compositional corrective additives required are proportioning is achieved by automatic sampling and analysis of the mill product, with a computer calculating feed requirements and controlling the weighfeeders, to provide fully automatic closed-loop control of the raw-mix composition. The moisture content of the raw materials often affects the choice of raw-milling system from the many types available, these all stem from a few main configurations, most of which involve rotating tubular mills with a charge of hard steel grinding media. A kiln is slightly inclined to the horizontal and rotates at 1-4 revolutions per minute. The solid material passes down the kiln as a result of both rolling and slipping as the kiln rotates, flowing counter to the combustion products from a flame of gas, oil or pulverised coal at the lower of“front”end. The principal kiln process employed inmaking Portland cement clinker are broadly classified as“dry”or“wet”depending on the method used to prepare the kiln feed. Clinker Quality Modules: Clinker quality modules given below are used to control cement quality. 1. Silica Ratio 2. Lime Saturation Factor 3. Alumina Ratio 4. Hydraulic Ratio 5. Percent Liquid 6. Burnability Index These modules are used for mix-calculation, mineral phase calculation and strength calculation in an EXCEL spreadsheet to optimise the use of raw materials, after evaluating the effects of chemical composition on the properties of clinker. Different Cements: Many of the cements have been developed to ensure good durability of concrete under a variety of conditions. It has not been possible, however, to find in the composition of cement a complete answer to the problem of durability of concrete: the principal mechanical properties of hardened concrete, such as strength, shrinkage, permeability, resistance to weathering, and creep are affected also by factors other than cement composition, although this determines to a large degree the rate of gain of strength. Some of the different cement are given below. Ordinary Portland Cement is the most common cement in use. About 90 per cent of all cement used in the United States and a like percentage in the UK. Rapid Hardening Cement developes strength more rapidly, and should, therefore, be correctly described as high early strength cement. In practise, rapid-hardening Portland cement has higher fineness than ordinary portland cement. Typically, theyhave a specific surface of 450 to 600 m2/kg, compared with 300 to 400 m2/kg for ordinary portland cement. It is necessary to limit the rate of heat evolution of the cement used in low heat portland cement of structure : a greater proportion of the heat can then be dissipated and a lower rise in temperature results. One of the most important cement is sulfate-resisting cement. Cements with a low C3A content (max % 3.5) are known as sulfate-resisting Portland Cement. EXCEL Spread Sheet: Quality modules are used for mix-calculation, mineral phase calculation and strength calculation of cement in an EXCEL spread sheet in order to optimise the use of raw materials after evaluating the effects of chemical composition on the properties of clinker. Firstly, it is calculated the effects of various rates of CaO in calcerous materials and SİO2, AI2O3 in clay on the quality modules and properties of clinker. The important ranges of CaO in calcerous materials and SİO2, AI2O3 in clay are obtained. The percentage of raw materials are also calculated by using formulas given in Chapter 5. These data are used by SURPAC to evaluate the cement raw material deposits and necessary data was produced to optimise the raw material production. SURPAC 2000: SURPAC 2000 is a software which has geological, engineering and planning applications. It uses the drillhole data to describe a deposit in three dimensions. These data can be stored in mandatory and optional tables, which can be created in various structure. SURPAC may be used to calculate a range of variograms that can be modeled interactively on the screen. It is also used to calculate the classified reserves using coventional and sophisticated techniques such as DTM, Solid Model and Block Models.In this case study, firstly, the deposit is classified in range of CaO, as limestone (% 45-100), clay (% 0-15) and clay-limestone (% 15-45). Also reserves are calculated for each class. Then, limestone is classified in ranges of CaO, which are important values for cement quality. And also reserves are calculated for each class of limestone. Finally, distribution maps of deposit are created for SİO2 and AI2O3 for 510, 520, 530 meter, which may be levels of open pit design. So, they all help the cement manufacturers to optimise to use and product the raw material.

Benzer Tezler

  1. Çimento hammaddelerinin öğütülmesinde enerji optimizasyonu

    Energy optimization for grinding of cement raw materials

    FIRAT KARAKAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2006

    Maden Mühendisliği ve Madencilikİstanbul Teknik Üniversitesi

    Maden Mühendisliği Ana Bilim Dalı

    PROF.DR. GÜVEN ÖNAL

  2. Bantlı götürücülerin optimizasyonu

    Optimization of belt conveyors

    HAMDİ ZORLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2009

    Makine MühendisliğiNamık Kemal Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. NURŞEN ÖNTÜRK

  3. Çimento hammaddelerinin yüzey özelliklerinin klinkerleşmeye etkisi

    The effect of clinkering mechanism on the surface properties of cement raw materials

    MEHMET AKKAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2009

    Seramik MühendisliğiDumlupınar Üniversitesi

    Seramik Mühendisliği Ana Bilim Dalı

    PROF. DR. İSKENDER IŞIK

    YRD. DOÇ. DR. BÜLENT YILMAZ

  4. Adana Çimento Fabrikası'nın hammadde malzemesinin jeoteknik özellikleri

    Geotechnical characteristics of raw material mines of Adana Cement Factory

    HANDE BELLİKLİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2001

    Jeoloji MühendisliğiÇukurova Üniversitesi

    Jeoloji Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HASAN ÇETİN

  5. Kompozit çimentoların hidratasyonunda partiküller arası etkileşim mekanizmaları

    The interaction mechanism among particles in the hydration of composite cements

    EDA TAŞÇI

    Doktora

    Türkçe

    Türkçe

    2010

    Seramik MühendisliğiDumlupınar Üniversitesi

    Seramik Mühendisliği Ana Bilim Dalı

    PROF. DR. İSKENDER IŞIK

    YRD. DOÇ. DR. BÜLENT YILMAZ