Geri Dön

Deri endüstrisi atıksularının ardışık kesikli reaktörlerle arıtılması

Başlık çevirisi mevcut değil.

  1. Tez No: 75604
  2. Yazar: BAŞAK BAŞEĞMEZLER
  3. Danışmanlar: PROF. DR. OLCAY TÜNAY
  4. Tez Türü: Yüksek Lisans
  5. Konular: Çevre Mühendisliği, Environmental Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1998
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Çevre Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 77

Özet

ÖZET Yapılan çalışmanın konusu deri endüstrisi atıksularının ardışık kesikli reaktör ile arıtılma performansının atıksuların gördüğü ön işlemlere bağlı olarak belirlenmesi, bu performansın organik yükleme, atıksuyun giriş KOİ konsantrasyonu, sistemin UAKM konsantrasyonu ve havalandırma süreleri gibi aktif çamur sisteminin temel tasarım kriterlerine göre ortaya konmasıdır. Bu amaçla öncelikle geniş bir literatür araştırması yapılmış, AKR sistemlerinin genel özellikleri, avantajları, dizayn esasları belirlenmiştir. Ayrıca AKR uygulamaları araştırılmış, özellikle deri endüstrisi gibi kuvvetli atıksuların bu yöntemle arıtılabilirliği incelenmiştir. AKR ile kuvvetli atıksuların yüksek organik yüklemeler ve kısa bekletme sürelerinde arıtılabileceği görülmüştür. Sistem performansının atıksuyun gördüğü ön işleme bağlı olarak belirlenmesi amacıyla deneysel çalışma ön çöktürülmüş ve kimyasal çaktürülmüş atıksuların kullanıldığı iki gruba ayrılmıştır. Ön çöktürülmüş ve kimyasal çöktürülmüş atıksulann kullanıldığı çalışmada ön çöktürülmüş atıksular için organik yüklemenin 0.3-3.21 g KOİ/g UAKM gün, atıksuyun giriş KOİ konsantrasyonunun 1420-3500 mg/1, sistemin UAKM konsantrasyonunun 1390-8650 mg/1 ve havalandırma süresinin 21, 9.5 ve 5.5 saat arasında değiştiği sistemler incelenmiştir. Kimyasal çöktürülmüş atıksulann incelendiği sistemlerde ise organik yükleme 0.23-1.28 g KOİ / g UAKM gün, atıksuyun giriş KOİ konsantrasyonu 870 - 1930 mg/1, sistemin UAKM konsantrasyonu 1820-6740 mg/1 ve havalandırma süreleri 9.5-5.5 saat aralıklarında değiştirilmiştir. Aynı atıksuyun ön çöktürülmüş ve kimyasal çöktürülmüş olarak kullanıldığı deneylerde yakın organik yüklemelerde yakın verimler elde edilmiştir. Yapılan çalışmada çıkış KOİ'nin incelenen faktörlerle yakın ilgisinin olmadığı görülmüştür. Çıkış KOİ' deki dalgalanmalar kullanılan deri cinsine ve proseslere bağlı olarak değişen atıksu karakteri ve çıkış akımında bulunan kolloidal maddelerle açıklanabilir. Ön çöktürülmüş atıksularla yürütülen deneylerde çıkış KOİ'ler 180 - 800 mg/1 arasında, kimyasal çöktürülmüş atıksularla yürütülen deneylerde ise 200 - 640 mg/1 arasındaki değerler olarak belirlenmiştir. Gözlenen dalgalanmalara rağmen AKR sistemiyle sürekli aktif çamur sistemlerinden daha yüksek organik yüklemelerde ve daha kısa bekletme sürelerinde tatmin edici sonuçlar alınmıştır. Dalgalanmaları gidermenin en iyi yolunun biyolojik arıtma çıkışında kimyasal çöktürme uygulamak olacağı düşünülmüş, sistemin kimyasal çöktürülmüş suyla beslenmesinin stabil bir akım sağlamayacağı görülmüştür. ıx

Özet (Çeviri)

TREATMENT OF LEATHER TANNINGINDUSTRY WASTEWATER USING SEQUENCING BATCH REACTOR SUMMARY The aim of this study is to evaluate the treatment performance of Sequencing Batch Reactors (SBR) for the treatment of tannery wastewater depending on different pretreatment applications (primary settling and chemical precipitation ) and on four system variables that are determined as the organic loading, the microorganism concentration in the reactor, the strength of the wastewater and the aeration time. Tannery wastewater has a complex structure as well as its high concentration of organic matter, chrome, sulfide, oil-grcasc, NII4-N and suspended solids. This characteristics of the tannery wastewater cause problems in biological treatment. As the conventional continuous activated sludge systems do not have adequate operational flexibility the problems can not be solved easily. In order to avoid problems high retention times and low organic loadings have been used for the treatment of tannery wastewater in continuous flow activated sludge systems. Recently Sequencing Batch Reactors are used for the biological treatment of both domestic wastewater and high strength industrial wastewater. The system is also used in the treatment of toxic wastewaters. Because of the operational flexibility of the SBR system, it offers a lot of advantages in the treatment of high strength industrial wastewater. In a study made by Özden Gün, (1997) it is seen that tannery wastewater can be treated in SBR efficiently with higher organic loadings and lower retention times than those used in continuous flow systems. In this study a wide range of literature research has been made about SBR technology and the treatability studies of industrial wastewater by SBR. Theory, advantages and design parameters of SBR' s are investigated and particularly the studies with high strength wastewaters which has similar characteristics with that of tannery wastewater. SBR systems may be designed using a single tank or multiple tanks in parallel. Five phases take place in each tank during a cycle which are called fill, react, settle, draw and idle. Several functions can be provided during one phase according to the treatment requirement.Some advantages of Sequencing Batch Reactors can be listed as follows: SBR can tolerate peak flows and shock loads as it serves like an equilization tank during fill. The effluent can be hold in the reactor until it meets the discharge limits. If the amount of wastewater is less than the design volume, liquid level sensors can be set at a lower level so that the treatment cycles can be kept the same without wasting power for over-aeration. Mixed liquor solids can not be washed out by hydraulic surges. Solid-liquid seperation occurs in the same tank under ideal quiescent conditions. As the sludge is always in the reactor no return activated sludge pumping is required. Filamentous growth can be easily controlled by varying the operating strategies during fill. SBR can be operated to achieve nitrification, denitrification or phosphorus removal without chemical addition. Sequencing Batch Reactor treatment applications on honey cannery and shrimp processing industries wastewater, piggery wastewater, palm oil refinery wastewater, papermill wastewater and tannery wastewater are examined. Organic loadings, cycle and phase times, COD removal efficiencies are determined in each study. In this study treatment performance of tannery wastewater after primary settling and chemical precipitation by SBR is determined under different organic loadings, COD concentrations of wastewater, concentrations of MLVSS and aeration time. Two laboratory scale reactors are used during the experiments. One of the reactors total volume was 12 1, while the other reactor total volume was 4 1. Fill, react, settle and draw phases of both reactors are operated with timers. Air is given with diffusors and complete mixing maintained with mechanical mixers. The characteristics of the wastewater used in the experimental work is shown in Table 1. Wastewater used was inlet and outlet of primary settling unit of Tuzla treatment plant which receives wastewater from different subcategories of leather processing plants. Table 1. The Characteristics of the Wastewater Used in Experimental Work. XIThree different cycles are used during the experimental study. Cycle times and the periods of phases are given in Table 2. Table 2. Cycle Times and Periods Used in Experimental Work. FeCl3 is used as a flocculant for the chemical precipitation. Anionic polyelectrolyte is also added. pH is adjusted with Ca(OH)2. The range of the variables used in the experiments are given in Table 3. Table 3. Range of Variables. The results of some expeeriments which may represent the whole range of system responses are given in Table 4 and Table 5 Table 4. Results of some experiments (after primary settling) XllTable 5. Results of some experiments (after chemical precipitation) The effects of variables on the performance of the system can be seen from the tables. The evaluation of the effects can be made as follows: Comparison of Example No 3 and Example No 45 shows that the organic loadings between the range 0.3 and 2.3 g COD/ g MLVSS day does not effect significantly the effluent COD. The experiments made with the same wastewater with different loading resulted in similar effluent COD indicating that the organic loading at least in the orders used in the experiments was not the determining factor of COD removal. This can be seen from the experiments 43 and 47. It is seen that the effect of influent COD is limited on the effluent COD. Experiment No 16 and Experiment No 22 can be compared to see the effect of influent COD. When we compare Experiments No 61, 62 and 58 it can be easily seen that if the influent COD values are similar the effluent COD is not affected significantly, (Experiment No 58 and 62) while the effect is apparent when the influent COD values are different (Experiment No 61 and 62 ). The effect of the product COD could not be seen even at the high concentrations of MLVSS. This can be seen from the comparison of Experiment No 51 and 52 and Experiment No 5 and 6. XlllWhen the gravity settled influent is fed into the system, VSS concentration of the system increases at the beginning however since the significant part of organic suspended solids in the influent is being removed, the VSS measurement is still valuable to indicate the microorganism concentration in the mixed liquours. Experiments 20 and 21 imply the parellelism indicated above. The aeration time is also does not seem to affect the COD removal performance of the system at an appreciable extent. At the end of experiments made with different organic loadings it is seen that the organic loading is not very effective on the efficiency of the system as it was mentioned before in a study made by Özden Gün (1997). The effect of the influent COD on the effluent COD is differentiate only when the influent COD concentrations are very different, generally its effect on the effluent COD is limited. The effect of MLVSS on the production of inert COD is also limited even at high concentrations of MLVSS. The aeration time do not affect the performance of the system significantly. The experiments which are made with the same wastewater after primary settling and chemical precipitation showed that approximately the same efficiencies can be achieved being independent of the pretreatment method. A stable effluent cannot be obtained with the chemical precipitation application. Chemical precipitation do not seem to affect the system performance. 66% of the effluent COD values of the wastewater treated after chemical precipitation are lower than 400 mg/1, while this percentage is 25 for the wastewater treated after primary settling. As a conclusion of the experiments done in parallel both with wastewaters after primary settling and chemical precipitation it is seen that chemical precipitation is not meaningful especially when the Ssconcentration of the wastewater is not high. The effluent COD is the most important point at the treatment of the tannery wastewater in order to meet the regulations. In this study it is seen that the effluent COD is not affected at a great extent from the factors examined. The effluent COD variation can be explained with two factors. The first one is the composition of the wastewater. The composition of the wastewater changes depending on the raw hide and chemicals used in the processing. The important point is the relation of composition with the strength of wastewater. The soluble and unsoluble parts of COD; the readily and slowly biodegradable and non-biodegradable parts of the COD and the degradation rates must be known in order to make a evaluation. The second factor is the characteristics of the effluent wastewater, which are the inert COD concentration and the colloidal matters that cannot be filtered with the standart filter (AP40) of the soluble COD procedure. This means that some colloidal matter is xivmeasured together with the soluble COD. The amount of colloidal matter contributing the resulting COD depends on the particle size of the colloidspresent. Colloidal matters can only be removed with a chemical precipitation after the biological treatment. If the discharge standart is not very low (COD

Benzer Tezler

  1. Deri endüstrisi atıksularının ardışık kesikli reaktör ile arıtılması

    Başlık çevirisi yok

    ÖZDEN GÜN

    Yüksek Lisans

    Türkçe

    Türkçe

    1997

    Çevre Mühendisliğiİstanbul Teknik Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    PROF. DR. OLCAY TÜNAY

  2. Ardışık kesikli reaktörler ile deri endüstrisi atıksularında karbon ve azot gideriminin araştırılması

    Sequencing batch reactor treatment of tannery wastewater for carbon and nitrogen removal

    SELDA MURAT

    Yüksek Lisans

    Türkçe

    Türkçe

    2002

    Çevre Mühendisliğiİstanbul Teknik Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    PROF. DR. DERİN ORHON

  3. Deri endüstrisi atıksularının biyolojik arıtılabilirliği ve kinetik karakterizasyonu

    Başlık çevirisi yok

    ESRA ATEŞ GENCELİ

    Doktora

    Türkçe

    Türkçe

    1997

    Çevre Mühendisliğiİstanbul Teknik Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    PROF. DR. ORHAN DERİN

  4. Deri endüstrisi atıksularının elektrokoagülasyon ile arıtımı

    The treatment of tannery wastewater by electrocoagulation

    UFUK DURMAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Çevre MühendisliğiNiğde Ömer Halisdemir Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    PROF. DR. FEHİMAN ÇİNER

  5. Deri endüstrisi atıksularının adsorpsiyon ve ileri oksidasyon prosesleri ile arıtılarak optimum noktalarının belirlenmesi

    Determination of optimum points by treatment of leather industry wastewater with adsorption and advanced oxidation processes

    CEREN SUDE BALCI

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Kimya MühendisliğiEskişehir Osmangazi Üniversitesi

    Kimya Mühendisliği Ana Bilim Dalı

    PROF. DR. YELİZ AŞÇI