Geri Dön

Machine learning assistedmulti-cell base station sleepmode management

Başlık çevirisi mevcut değil.

  1. Tez No: 756533
  2. Yazar: MERT ÖZDEMİR
  3. Danışmanlar: DR. MEYSAM MASOUDİ, DR. ÖZLEM TUGFE DEMİR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: İngilizce
  9. Üniversite: KTH-Kungliga Tekniska Högskolan (Royal Institute of Technology)
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 85

Özet

Özet yok.

Özet (Çeviri)

Fifth generation (5G) communication technology provides higher data rates, better connectivity, and many new facilities. However, there are some challenges that need to be addressed. Denser 5G base station deployment, more power-hungry communication equipment, and an exponentially growing number of mobile users are expected to result in high energy consumption, which is a critical issue for the future in terms of sustainability and potential threats to the environment. These issues raise the importance of energyefficient network design in an aim to increase energy saving. Energy saving could be potentially achieved on the most energy-consuming component of the mobile networks: base stations. By switching off a number of components while not serving any users, base stations could switch to a sleeping mode thus, save energy. This thesis focuses on maximizing the sleeping opportunity of a base station while it is not serving any users by exploiting novelties brought by 5G networks namely 5G NR numerology and designing a sleep management algorithm for base stations to reduce redundant energy consumption by using Advanced Sleep Modes. To maximize the duration of sleep, 5G numerology with finer time granularity was used and an increase in the sleeping opportunity was observed compared to the baseline numerology in 4G systems. Based on that, a Qlearning algorithm has been designed in a reference base station in a multicell environment in order to manage how long and how deep to sleep by using Advanced Sleep Modes. The results have shown that compared to a non-intelligent sleep mode management scheme, which takes advantage of only the shallowest sleep mode, up to 80% of the potentially wasted energy when the BS is inactive could be saved. With a balanced trade-off policy between power consumption and additional latency induced to the users, 51% of the potentially wasted energy is saved while the users experience an additional latency of 2.1 ms on average. The algorithm adapts to the changing conditions in the network by making decisions according to the varying sleeping opportunities.

Benzer Tezler

  1. Predicting the admission decision acandidate to the School of Physical Education and Sport at Çukurova University by using different machine learning algorithms

    Farklı makina lagoritmaları kullanarak Çukurova Üniversitesi Beden Eğitimi ve Spor Okulu'na alınacak adayların kabul kararlarının belirlenmesi

    İSMAİL TURHAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÇukurova Üniversitesi

    Bilgisayar Ana Bilim Dalı

    DOÇ. DR. MEHMET FATİH AKAY

  2. Machine-learning approaches for neurological disorder diagnosis from genomic and neuroimaging data

    Genomik ve nörogörüntüleme verilerinden nörolojik bozukluk teşhisi için makine öğrenmesi yaklaşımları

    İSMAİL BİLGEN

    Doktora

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. BEHÇET UĞUR TÖREYİN

  3. Machine learning assisted force field development for nucleic acids

    Nükleik asitler için makine öğrenimi destekli kuvvet alanı geliştirilmesi

    GÖZDE İNİŞ DEMİR

    Doktora

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Hesaplamalı Bilimler ve Mühendislik Ana Bilim Dalı

    PROF. DR. ADEM TEKİN

  4. Machine learning assisted design of biomedical high entropy alloys with low elastic modulus for orthopedic applications

    Ortopedik uygulamalar için düşük elastik modüle sahip biyomedikal yüksek entropili alaşımların makine öğrenimi destekli tasarımı

    HÜSEYİN CAN ÖZDEMİR

    Doktora

    İngilizce

    İngilizce

    2024

    Makine MühendisliğiKoç Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. DEMİRCAN CANADİNÇ

  5. Drought prediction based on meteorological data using ensemble machine learning techniques

    Topluluk tabanlı makine öğrenmesi teknikleri kullanılarak meteorolojik verilere dayalı kuraklık tahmini

    ERTUĞRUL ÖZÜPEK

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    MatematikGebze Teknik Üniversitesi

    Matematik Ana Bilim Dalı

    PROF. DR. NURİ ÇELİK