Geri Dön

Machine learning assistedmulti-cell base station sleepmode management

Başlık çevirisi mevcut değil.

  1. Tez No: 756533
  2. Yazar: MERT ÖZDEMİR
  3. Danışmanlar: DR. MEYSAM MASOUDİ, DR. ÖZLEM TUGFE DEMİR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: İngilizce
  9. Üniversite: KTH-Kungliga Tekniska Högskolan (Royal Institute of Technology)
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 85

Özet

Özet yok.

Özet (Çeviri)

Fifth generation (5G) communication technology provides higher data rates, better connectivity, and many new facilities. However, there are some challenges that need to be addressed. Denser 5G base station deployment, more power-hungry communication equipment, and an exponentially growing number of mobile users are expected to result in high energy consumption, which is a critical issue for the future in terms of sustainability and potential threats to the environment. These issues raise the importance of energyefficient network design in an aim to increase energy saving. Energy saving could be potentially achieved on the most energy-consuming component of the mobile networks: base stations. By switching off a number of components while not serving any users, base stations could switch to a sleeping mode thus, save energy. This thesis focuses on maximizing the sleeping opportunity of a base station while it is not serving any users by exploiting novelties brought by 5G networks namely 5G NR numerology and designing a sleep management algorithm for base stations to reduce redundant energy consumption by using Advanced Sleep Modes. To maximize the duration of sleep, 5G numerology with finer time granularity was used and an increase in the sleeping opportunity was observed compared to the baseline numerology in 4G systems. Based on that, a Qlearning algorithm has been designed in a reference base station in a multicell environment in order to manage how long and how deep to sleep by using Advanced Sleep Modes. The results have shown that compared to a non-intelligent sleep mode management scheme, which takes advantage of only the shallowest sleep mode, up to 80% of the potentially wasted energy when the BS is inactive could be saved. With a balanced trade-off policy between power consumption and additional latency induced to the users, 51% of the potentially wasted energy is saved while the users experience an additional latency of 2.1 ms on average. The algorithm adapts to the changing conditions in the network by making decisions according to the varying sleeping opportunities.

Benzer Tezler

  1. Machine learning and language acquisition: A model of child's learning of Turkish morphophonolog

    Makina öğrenmesi ve dil edinimi: Çocuğun Türkçe biçim-sesbilimini öğrenmesinin bir modeli

    YASEMİN ALTUN

    Yüksek Lisans

    İngilizce

    İngilizce

    1999

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Bilişsel Bilim Ana Bilim Dalı

    DOÇ. DR. CEM BOZŞAHİN

  2. Machine learning algorhtims for heart rhythm classification

    Makine öğrenme algoritmaları kalp ritminin sınıflandırılması

    HUSSEIN ALI MOHAMMED MOHAMMED

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Bilgi Teknolojileri Ana Bilim Dalı

    PROF. DR. GALİP CANSEVER

  3. Hidroelektrik santrallerde makine öğrenmesi temelli anomali tespiti

    Machine learning based anomaly detection in hydroelectric power plants

    MEHMET AKİF BÜTÜNER

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Elektrik ve Elektronik MühendisliğiAnkara Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. İLHAN KOŞALAY

  4. Kitlesel değerlemede makine öğrenme algoritmaları

    Machine learning algorithms in mass appraisal

    SİBEL CANAZ SEVGEN

    Doktora

    Türkçe

    Türkçe

    2022

    Bilim ve TeknolojiAnkara Üniversitesi

    Gayrimenkul Geliştirme ve Yönetimi Ana Bilim Dalı

    DOÇ. DR. YEŞİM TANRIVERMİŞ

  5. Machine learning algorithms for predicting pandemic possibility based on common symptoms

    Ortak belirtilere dayalı pandemi olasılığını öngörmek için makine öğrenim algoritmaları

    MUSTAFA AHMED MUSTAFA AL-FATYAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Bilgi Teknolojileri Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MESUT ÇEVİK