Geri Dön

Katı oksit yakıt hücresi (KOYH) ejektörü akış kanalının sayısal yöntemlerle geliştirilmesi

Developoment of solid oxide fuel cell (SOFC) ejector flow channel by numerical methods

  1. Tez No: 808474
  2. Yazar: YASİN AKALAN
  3. Danışmanlar: DR. ÖĞR. ÜYESİ HASAN KÜÇÜK
  4. Tez Türü: Yüksek Lisans
  5. Konular: Enerji, Makine Mühendisliği, Energy, Mechanical Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: Sakarya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Makine Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Enerji Bilim Dalı
  13. Sayfa Sayısı: 109

Özet

Fosil enerji kaynaklarının sürekli yükselen maliyetleri ve çevresel etkileri enerji sistemlerinde verimliliğin önemini artırmaktadır. Geliştirilmekte olan katı oksit yakıt hücreleri (KOYH), konutlarda mikro birleşik ısı ve güç üretimine (mBIG), dolayısıyla da en yüksek verimle, dağıtık elektrik üretimine olanak sağlar. Anot atık gazının geri beslenmesi, yüksek maliyetleri nedeniyle boyutları sınırlı tutulan KOYH'lerinde verimi artırmasının yanında, KOYH girişindeki yakıt dönüştürücüye su buharı ve ısı enerjisi de sağlar. Küçük güçlü KOYH'lerinde (Pel

Özet (Çeviri)

The ever-increasing costs and environmental effects of fossil energy resources increase the importance of efficiency in energy systems. Solid oxide fuel cells (SOFC) under development enable micro-combined heat and power generation (mCHP) in residential buildings, thus, distributed electricity production with the highest efficiency. Recirculation of the anode exhaust gas not only increases the efficiency of the SOFCs whose dimensions are limited due to their high costs but also provides water vapor and heat energy to the fuel reformer at the SOFC inlet. Ejectors are preferred for recirculation of the high temperature (~1000oC) anode exhaust gas for low-power SOFCs (Pel < 5 kWe). The ejector's recirculation rate (RR), which directly affects the performance of the SOFC, depends on the operating conditions and the compressible flow structures varying with the geometric dimensions of cross-sections along the main flow channel. In the presented thesis, the main flow channel of the ejector that recirculates hot anode exhaust gas of a SOFC generating 2 kWe of electricity is designed. To this end, the effects of suction chamber constriction angle (α2), suction chamber length (Ls), mixing chamber diameter (Dm), mixing chamber length (Lm), diffuser expansion angle (α3), diffuser length (Ld) and the length of the divergent section of the primary nozzle (Lnd) on the RR were investigated by computational fluid dynamics (CFD) and Taguchi experimental design method. First of all, the geometry of the critical cross-sections such as throat diameter (Dt) of the convergent-divergent primary nozzle was determined with the 1-D thermo-hydrodynamic compressible flow models suggested for ejectors in the literature. Then, three levels were selected for the ranges recommended in the open literature for each of the other geometric dimensions of the main flow channel of the ejector that could not be determined directly by calculations. In the design of the ejector models used in the first stage of CFD experiments, the levels of the five selected flow channel geometric parameters were matched according to the L27(35) orthogonal array suggested by Taguchi. CFD analyses were performed with SolidWorks Flow Simulation software. RR calculated with the results of CFD analyses were evaluated according to the“the-larger the-better”signal to noise (S/N) ratio proposed by Taguchi. The optimum levels and percentace severity for the considered five geometric parameters in the first stage of the analyzes are determined respectively as α3= 9° (32.09%), Ls= 8,1 mm (23.54%), α2= 15° (16.97%), Lm= 24.4 mm (11.23%) and Ld= 48.7 mm (0,1%). These results are consistent with the literature. In the second stage analyses for three different mixing chamber diameters (Dm/Dt= 6, 9 ve 12), CFD analyses were performed on 27 ejector models prepared for each mixing chamber diameter (81 different ejector models in total). In these analyses, the closest results to the targeted RR of 7.2 for SOFC were obtained with the ejector models prepared for Dm/Dt= 9. The optimum levels and percentage severity for the considered six geometric parameters in the second stage of the analysis are determined respectively as α3= 7° (35.01%), Lm= 27,3mm (25.85%), Lnd= 0,58mm (12.75%), α2= 25° (7.65%), Ld= 54,5mm (7.13%) and Ls= 3,0mm (1,67%). These results are consistent with the literature. The most important geometric design parameters of the ejector flow channel in terms of RR are the diameter (Dm) and length (Lm) of the mixing chamber, as expected. As the diameter of the mixing chamber increases, the required length becomes shorter and the optimal ratios of these two parameters were determined as Dm/Dt= 9 and Lm/Dm= 5-7. Diffuser expansion angle (α3) is also one of the important parameters and the determined optimal angle is 8° in accordance with the literature. The effect of the suction chamber's constriction angle (α2) on the RR is less than the parameters mentioned so far. This angle should be greater than 20° according to the obtained results. As the diameter of the mixing chamber increases, the effects of the suction chamber and primary nozzle divergent section lengths on the GBO increase. The diffuser length is the ejector flow channel parameter with the lowest effect on the RR. Therefore, by making the diffuser as short as possible, the overall length of the ejector can be shortened as well. As a general conclusion, it has been shown that main flow channel design of SOFC-specific anode exhaust gas recirculation ejector can be developed by numerical methods (Taguchi experimental design and CFD analysis).

Benzer Tezler

  1. Artificial intelligence application in integrated gasification solid oxide fuel cell cycle

    Gazlaştırıcı ile entegre edilmiş katı oksit yakıt hücresi çevriminde yapay zeka uygulaması

    SENEM SEZER

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Kimya MühendisliğiMarmara Üniversitesi

    Kimya Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ UĞUR ÖZVEREN

  2. Synthesis and characterization of transition metal doped solid oxide fuel cell cathodes

    Geçiş metali katkılı katı oksit yakıt hücresi katot elektrodu sentezi ve karakterizasyonu

    AYŞENUR ESLEM KISA

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    EnerjiBoğaziçi Üniversitesi

    Kimya Ana Bilim Dalı

    YRD. DOÇ. OKTAY DEMİRCAN

  3. Modeling and analysis of a reversible solid oxide cell system

    Tersinir katı oksit pili sisteminin modellenmesi ve analizi

    MUIZ ADEKUNLE AGBAJE

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    EnerjiYıldız Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ALİ VOLKAN AKKAYA

  4. Farklı generatör denetleyicileri ve ÇBAG tabanlı rüzgar türbini entegre edilen güç sisteminde küçük sinyal kararlılığının incelenmesi

    Investigation of small signal stability in power system integrated DFIG based wind turbine and different generator controller

    MAHMUT ÖZBAY

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik MühendisliğiDüzce Üniversitesi

    Elektrik-Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MEHMET KENAN DÖŞOĞLU

  5. Performance analysis of solid oxide fuel cell gas turbine hybrid system

    Katı oksit yakıt hücresi-gaz türbini hibrit sisteminin performans analizi

    MUHAMMAD YAQOOB KHAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    EnerjiSabancı Üniversitesi

    Enerji Kaynakları ve Yönetimi Ana Bilim Dalı

    Prof. Dr. SERHAT YEŞİLYURT