Geri Dön

Hibrit (karma) sismik kontrol sistemi eklenmiş bir binadayapı zemin etkileşimi

Soil-structure interaction in a hybridly seismiccontrolled building

  1. Tez No: 824799
  2. Yazar: SAADET KOSİF
  3. Danışmanlar: DOÇ. DR. ARCAN YANIK
  4. Tez Türü: Yüksek Lisans
  5. Konular: Deprem Mühendisliği, İnşaat Mühendisliği, Earthquake Engineering, Civil Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Deprem Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Deprem Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 89

Özet

İnsanlık tarihi boyunca doğal afetlerden en yıkıcı olanı depremlerdir. Yerkabuğu içinde bulunan plakaların kırılmaları nedeniyle ani olarak ortaya çıkan titreşimlerin dalgalar halinde yayılarak geçtikleri ortamları ve yer yüzeyini sarsma olayına“DEPREM”denir. Ülkemizin de içinde bulunduğu sismik yönden aktif bulunan bölgelerde sık sık görülen depremlerde oluşabilecek felaketlerin önlenebilmesi için depreme dayanıklı yapı tasarımı fikri ortaya çıkmıştır. 1969 yılında ilk uygulaması başlanılan izolatörler hala geliştirilmeye devam etmektedir. Yapılan bu çalışmanın ilk kısımlarında, araştırmacıların önceki çalışmaları incelenmiştir. Şu an kullanılan aktif, pasif ve karma kontrol sistemleri tanıtılmıştır. Aktif kontrol sistemleri yapıya bir güç kaynağı ve bilgisayarlı sistemler ile yapının sismik hareketine karşı direnç uygular. Ancak bu sistemlerin enerjiye bağımlılığı problemini çözmek için karma kontrol sistemleri ortaya çıkmıştır. Karma kontrol sistemleri, aktif ve pasif sistemlerin bir arada kullanılmasıdır. 1994 Northridge depreminde istenilen taleplerin sağlanmaması bu fikri ortaya çıkarmıştır. Böylelikle deprem esnasında sistemlerin herhangi birinin devre dışı kalması durumunda yapının sağlıklı hareketine devam edebilmesini sağlar. Pasif kontrol sistemleri, yapı ile temel arasında oluşturulan ara yüz sistemleridir. Amaç yapıya gelen sismik hareketin üst birimlere yayılmadan izolatörlerce sönümlenmesidir. Bu sistemlerin daha iyi sunulması amacıyla Dünyada ve Türkiye'de bulunan örnekler açıklanmıştır. Tez çalışmasının asıl konusu olarak yapısal kontrolün, karma (hibrit) pasif kontrol dalı incelenmiştir. Bu dalın önemli örneklerinden olan taban izolasyonları ve ayarlı kütle sönümleyicilerin birlikte kullanımı sayısal olarak incelenmiştir. Taban izolasyonu ve ayarlı kütle sönümleyicilerin beraber kullanıldığı karma (hibrit) pasif kontrol sistem performansı SAP2000 programına tanımlanan binalara uygulanarak deprem etkisi altında irdelenmiştir. Yapı zemin etkileşimi yapıya eksenel ve dönme rijitliği ve sönümü olarak eklenmiştir. Tezde tanımlanan bina taban izolasyonu ve ayarlı kütle sönümleyicisi eklenmiş durum ve yapı zemin etkileşiminin bulunduğu hal için incelenmiştir. Çeşitli depremler etkisi altında geleneksel yapının davranışı ile karma pasif kontrol sisteminin sismik davranışları karşılaştırılmıştır. Elde edilen sonuçlar yapı zemin etkileşimi etkisi ve yapının tabana ankastre olduğu durumlar için karşılaştırılmalı olarak verilmiş ve irdelenmiştir.

Özet (Çeviri)

Earthquakes have been the most destructive of natural disasters throughout the human history. ''Earthquake'' is a term used to describe a phenomenon which causes sudden vibrations to occur in the surroundings and on the surface of the earth as a result of the breaking of plates in the crust. The concept of earthquake resistant construction has been developed to prevent disasters that may arise in earthquakes, which are frequently observed in seismically active regions, such as our country. The isolators, firstly used in 1969, are still being developed to this day. Our country is located on the Anatolian Plate. It is surrounded by the Eurasian Plate in the north, the African and Arabian Plate in the south, the Eastern Anatolian Block in the east and the Aegean Block in the west. In Turkey; There are 3 fault lines: Northern Anatolian Fault Line, Eastern Anatolian Fault Line and Western Anatolian Fault Line. Seismicity is quite high. Due to this seismicity, the use of insulators in important buildings has become quite common. Especially since 2013, it has been decided to make seismic isolation mandatory in all public hospitals with 100 beds and above. Researchers' earlier studies were covered in the opening sections of this study. The studies under consideration are often classified into three types: the system definitions, isolator findings, usage result comparisons across multiple projects, and distribution outcomes assessed for ground permits are all included in this. Following a review of the literature, the definitions of the control systems (used to stop earthquake, vibration, and wind movement) in structures were made. There are three categories of control systems. These three types of control systems are active, passive, and mixed. Chapter 2 of the thesis contains a definition of these systems. The expanded summary includes an explanation of control system definitions. Active control systems use computerized technologies to supply a power source to the structure and provide seismic movement resistance. The movement of the structure or an external influence starts the system cycle. Sensors in the system respond to movement. The actuators produce the control force as a result of the computer's calculation of control force. The structure achieves the requisite stability. Mixed control systems, however, have developed to address the issues of potential faults in these systems' code systems and their reliance on energy. When the desired needs of the Northridge earthquake of 1994 were not reached, the concept of mixed control systems was born. Mixed control systems are the combination of active and passive systems. The goal is to make sure that the structure can keep moving normally even if one or more of the systems fail during an earthquake. For this kind of situation, there are several combinations. Usually, tuned mass dampers or tuned liquid dampers are employed in acculators. Passive control systems were the final system to be explored. Passive energy absorbers and seismic isolation systems are passive control systems. Passive energy absorbers are components that have been introduced to the structure with the intention of ensuring energy absorption through the component's operation. The interface systems built between the building and the foundation are known as seismic isolated systems. The goal is to reduce seismic movement that the insulators of the structure will cause before it spreads to the upper units. Base isolators enable the structure's period to be extended. Moving insulators, however, use up much of the necessary energy internally. The system is informed of the remaining demand. They are the best control mechanisms. Examples from around the globe and from Turkey are discussed in chapter 3 to help illustrate these systems. The model of digital examples, and the processing of earthquake data, are discussed as part of Chapter 4 of this thesis. A ten-story building, which complies with the laws of our country, has been examined in the thesis. The height and opening of the building has been decided in s symmetrical manner. The concrete class C25 has been chosen. This is due to the fact that it is the most common type of concrete building material. The structure was subjected to a variety of insulator systems during the study. Subsequently, soil values have entered in the foundation system to monitor interactions between soils. Rubber isolators, adjustable mass dampers, and mixed (hybrid) systems are examples of insulator types used. Base isolations and adjusted mass dampers are used in combination to create mixed (hybrid) systems. Rubber insulator values are derived from actual samples. Based on the values of the embedded structure, the tuned mass dampers' values were chosen. By using it on buildings from the SAP2000 program, the performance of a mixed (hybrid) passive control system with built-in connections, base isolators, tuned mass dampers, and when both base isolation and tuned mass dampers are employed together was studied under the earthquake effect. The Kocaeli earthquake that struck in 1999 and the Kahramanmaraş-Pazarck earthquake that occurred in 2023 are the two earthquakes that were chosen. The Kocaeli earthquake took place on the Northern Anatolian fault line. Its duration is 7 seconds. Kahramanmaraş-Pazarcık earthquake is an earthquake that occurred on the Eastern Anatolian fault line due to its location. Duration ıs 105 seconds. Data were retrieved from PEER and AFAD. Earthquakes are matched to design spectra that have been established by law. It was found that the Kahramanmaraş earthquake significantly exceeded the spectrum graph. Due to this issue, the original and matched earthquake data were both reviewed, and the findings were given. The displacement graphs of the floors, acceleration graphs of the floors, and accelerations of the top floor were compared graphically within the three data sets. The connection between a building and the ground has a specified foundation. The foundation height is 1 m. This aids in defining the structure's axial and rotational stiffness. Istanbul was chosen as the ground interaction location because it has known ground values. Under the foundation, floor values are assigned as Winkler Spring loads. The case of structure-soil interaction was addressed in the thesis using the previously defined classical case, basic isolation case, adjustable mass damper added case, and hybrid cases. The displacement graphs of the floors, acceleration graphs of the floors, and accelerations of the top floor were compared graphically within the three data sets. The findings are discussed in the pertinent parts, and a comparison is made between the behavior of the conventional structure and the seismic behavior of the mixed passive control system. The findings are presented and compared for the influence of the structure-ground interaction and the scenarios in which the structure is attached to the base in the conclusion section.

Benzer Tezler

  1. A new hybrid composite isolation system for earthquake protection of structures

    Yapıların deprem koruma için yeni bir hibrit kompozit izolasyon sistemi

    SALAH MUSTAFA A.ALMUSBAHI

    Doktora

    İngilizce

    İngilizce

    2019

    Metalurji MühendisliğiKarabük Üniversitesi

    Metalurji ve Malzeme Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ GÜNGÖR

  2. Deprem etkisindeki yapıların sismik taban izolasyonu ve çoklu ayarlı kütle sönümleyici sistemleri ile karma korunması

    Hybrid protection of earthquake excited structures by using seismic base isolation and multiple tuned mass damper systems

    MOHAMMAD HARRIS WAHEB

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Deprem Mühendisliğiİstanbul Aydın Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ SEPANTA NAİMİ

  3. Improvement of the cyclic flexural capacity of RC columns with FRP reinforcement

    Lifli polimer donatılar kullanılarak betonarme kolonların çevrimsel yükler altında eğilme kapasitelerinin artırılması

    ENGİN CÜNEYT SEYHAN

    Doktora

    İngilizce

    İngilizce

    2016

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. ALPER İLKİ

  4. GIS-based multi-criteria decision analysis for optimal urban emergency facility planning

    Kentsel optimal acil durum tesis planlaması için CBS tabanlı çok kriterli karar analizi

    PENJANI HOPKINS NYIMBILI

    Doktora

    İngilizce

    İngilizce

    2022

    Coğrafyaİstanbul Teknik Üniversitesi

    Geomatik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. TURAN ERDEN

  5. Tekrarlı yükler etkisindeki bölme duvarların çimento esaslı tekstil kompozitlerle iyileştirme yöntemlerinin geliştirilmesi

    Improving retrofitting methods for partition walls under lateral cyclic loading using cement based textile composites

    DİDEM DÖNMEZ

    Doktora

    Türkçe

    Türkçe

    2021

    Deprem Mühendisliğiİstanbul Teknik Üniversitesi

    Deprem Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MUSTAFA GENÇOĞLU