Geri Dön

Heuristic vectorized learning method based PV forecasting by using image recognition-based sky camera integration within sensor set

Görüntü tanıma tabanlı gökyüzü kamerası entegrasyonunu kullanarak sezgisel vektörize öğrenme yöntemine dayalı PV tahmini

  1. Tez No: 825029
  2. Yazar: LEVENT YAVUZ
  3. Danışmanlar: DOÇ. DR. AHMET ÖNEN
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Enerji, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering, Energy
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: İngilizce
  9. Üniversite: Abdullah Gül Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 95

Özet

Talep ve üretim dengesinin sürekliliğini sağlamak için, ülkeler yenilenebilir enerji kaynaklarını (YEK) kullanımı yakın gelecekte artış gösterecektir. Güneş enerjisi üretimi, yenilenebilir enerjinin elektrik şebekesine entegrasyonu için önemlidir, ancak güneş enerjisinin belirsiz ve kesintili doğası nedeniyle güç sistemlerinde problemlere neden olabilir. Derin öğrenme yöntemleri, güneş enerjisi tahmininde umut verici sonuçlar sağlamaktadır, ancak bu modellerin performansı ağa atanan başlangıç ağırlıklarına bağlıdır. Bu çalışmada, Sezgisel Vektörleştirilmiş Öğrenme yöntemi olarak adlandırılan yeni bir ağırlık başlatma yöntemi önerilmektedir. Bu yöntem, istatistiksel bir yaklaşımı derin öğrenmeye dayalı bir yöntemle birleştirerek güneş tahmininde daha iyi doğruluk elde etmeyi amaçlamaktadır. Yöntemin Xavier, LeCun, He ve Random gibi yaygın olarak kullanılan başka yöntemlerle karşılaştırması yapılmıştır ve önerilen yöntemin daha iyi performans gösterdiği görülmüştür. Genel olarak, önerilen ağırlık başlatma yöntemi, elektrik şebekesine yenilenebilir enerji entegrasyonu bağlamında güneş tahmini uygulamaları için önemli faydalar sağlamaktadır. Dolayısıyla, çevresel sensör verileriyle birlikte kullanılarak fotovoltaik üretim tahmini için bir hibrit model oluşturulmuştur. Önerilen yöntem ve panel gölgeleme modeli, Kayseri ilinde bulunan Abdullah Gül Üniversitesi yerleşkesinde daha yüksek doğruluk değerleri elde etmektedir. Önerilen sistem, gün içi enerji piyasaları için güvenilir bir PV enerji tahmini sağlar.

Özet (Çeviri)

In order to ensure the continuity of demand and production balance, the use of renewable energy resources (RES) by countries will increase in the near future. Solar power generation is important for the integration of renewable energy into the power grid, but it can cause problems in power systems due to the uncertain and intermittent nature of solar power. Deep learning methods provide promising results in solar energy prediction, but the performance of these models depends on the initial weights assigned to the network. In this thesis, a novel weight initialization method, the Heuristic Vectorised Learning method, which takes into account certain characteristics of solar generation data has been proposed. This method aims to achieve better accuracy in solar forecasting by combining a statistical approach with a method based on deep learning. The method was compared with other commonly used methods such as Xavier, LeCun, He and Random, and it was seen that the proposed method performed better. Overall, the proposed weight initialization method provides significant benefits for solar forecasting applications in the context of renewable energy integration into the power grid. So, to reach higher accuracy, monitoring the sky is the best option for intra-day forecasts. Therefore, a hybrid model was created for photovoltaic generation prediction by using it together with environmental sensor data. The proposed method and panel shading model achieve higher accuracy values at the Abdullah Gül University campus in Kayseri. The proposed system provides a reliable PV energy forecast for the intraday energy markets.

Benzer Tezler

  1. Sezgisel yöntemlerle hiperspektral görüntülerde boyut indirgeme

    Dimension reduction with heuristic methods in hyperspectral images

    HÜSEYİN ÇUKUR

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Elektrik ve Elektronik MühendisliğiYıldız Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. ABDULLAH BAL

  2. Bozulabilir ürünlerin dağıtım planlaması için sezgisel yaklaşımlar

    Heuristic approaches for distribution planning of perishable foods

    UFUK YAPAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    Endüstri ve Endüstri MühendisliğiGazi Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. FULYA ALTIPARMAK

  3. Heuristic search algorithms to detect collusive opportunities in deregulated electricity markets

    Serbestleşmiş elektrik piyasalarında gizli anlamaşları tespit etmek için sezgisel arama algoritmaları

    ELİF YILMAZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Endüstri ve Endüstri MühendisliğiSabancı Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. GÜVENÇ ŞAHİN

  4. Asenkron motorlarda sezgisel tabanlı yerinde verim tahmini

    Heuristic based in situ efficiency estimation for induction motors

    MURAT GÖZTAŞ

    Doktora

    Türkçe

    Türkçe

    2025

    Elektrik ve Elektronik MühendisliğiSelçuk Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET ÇUNKAŞ

  5. Heuristic evaluation of sonic experience in Hellblade: Senua's Sacrifice: Investigating the affect and practicality of sound

    Hellblade: Senua's Sacrifice oyunundaki işitsel deneyimin sezgisel değerlendirmesi: Sesin duygulanım ve işlevselliği

    AYŞE TUBA ÖZBAŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    İletişim BilimleriBahçeşehir Üniversitesi

    İletişim Tasarımı Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ÇAKIR AKER