Kesirli Fourier çarpanları
A note on fractional Fourier multipliers
- Tez No: 826886
- Danışmanlar: DOÇ. DR. AYŞE SANDIKÇI
- Tez Türü: Yüksek Lisans
- Konular: Matematik, Mathematics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: Türkçe
- Üniversite: Ondokuz Mayıs Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Matematik Ana Bilim Dalı
- Bilim Dalı: Analiz ve Fonksiyonlar Teorisi Bilim Dalı
- Sayfa Sayısı: 48
Özet
Fourier dönüşümü, durağan olmayan sinyal analizi bağlamında özellikle önemli olan sinyalin yerel zaman-frekans özellikleri hakkında bilgi vermez. Bu tür sinyalleri analiz etmek için tamsayı dereceli Fourier dönüşümünün bir genellemesi olan kesirli Fourier dönüşümü (FrFT) bu bağlamda kullanılabilir. Kesirli Fourier dönüşümü, iyi bilinen Fourier dönüşümünün matematiksel genelleştirilmesidir. Fourier analizinde, çarpan operatörü bir tür doğrusal operatör veya fonksiyonların dönüşümüdür. Bu operatörler, Fourier dönüşümünü değiştirerek bir fonksiyon üzerinde hareket ederler. Özel olarak, bir fonksiyonun Fourier dönüşümünü, çarpan veya sembol olarak bilinen belirli bir fonksiyonla çarparlar. Basit bir ifadeyle, çarpan, herhangi bir işlevde yer alan frekansları yeniden şekillendirir. Sinyal işlemede, bir çarpan operatörüne“filtre”denir ve çarpan, filtrenin frekans yanıtıdır (veya transfer fonksiyonudur). Daha geniş bağlamda, çarpan operatörleri, bir operatörün (veya değişme operatörleri ailesinin) fonksiyonel hesabından kaynaklanan spektral çarpan operatörlerinin özel durumlarıdır. Bu çalışmada, Lebesgue uzayları üzerinde tanımlı olan Fourier çarpanlarının uzayı tanımlanacak ve bu uzayın özellikleri incelenecektir. Daha sonra ise bu tanım kesirli Fourier çarpanları uzayına genişletilecektir.
Özet (Çeviri)
The Fourier transform does not provide information about the local time-frequency properties of the signal, which is particularly important in the context of non-stationary signal analysis. Fractional Fourier transform (FrFT), a generalization of integer order Fourier transform, can be used in this context to analyze such signals. The fractional Fourier transform is a mathematical generalization of the well-known Fourier transform. In Fourier analysis, the multiplier operator is a kind of linear operator or transform of functions. These operators act on a function by changing the Fourier transform. In particular, they multiply the Fourier transform of a function by a particular function known as a factor or symbol. In simple terms, the multiplier reshapes the frequencies involved in any function. In signal processing, a multiplier operator is called a“filter”and the multiplier is the frequency response (or transfer function) of the filter. In a broader context, multiplier operators are special cases of spectral multiplier operators resulting from the functional calculation of an operator (or family of commutation operators). In this study, the space of Fourier multipliers defined on Lebesgue spaces will be defined and the properties of this space will be investigated. Later, this definition will be extended to the fractional Fourier multipliers space. Moreover, the Fourier multipliers space and the fractional Fourier space will be compared and the relationship with some known results will be examined.
Benzer Tezler
- Kesirli Fourier dönüşümü ağırlıklı Segal cebirinde olan fonksiyon uzayları ve bazı tıkız gömülmeler
On function spaces with fractional Fourier transform in the weighted Segal algebra and some compact embeddings
ERDEM TOKSOY
- Template based image watermarking in the fractional Fourier domain
Kesirli Fourier uzayında şablona dayalı imge damgalama
TOLGA GÖKOZAN
Yüksek Lisans
İngilizce
2005
Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik ÜniversitesiElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. GÖZDE BOZDAĞI AKAR
- Graph fractional fourier transform
Çizge kesirli fourier dönüşümü
TUNA ALİKAŞİFOĞLU
Yüksek Lisans
İngilizce
2024
Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ AYKUT KOÇ
- Feature extraction with the fractional fourier transform
Kesirli fourier dönüşümü ile öznitelik bulma
GÜLERYÜZ ÖZGÜR
Yüksek Lisans
İngilizce
1998
Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. HALDUN M. ÖZAKTAŞ
- The Discrete fractional fourier transform
Ayrık kesirli fourier dönüşümü
ÇAĞATAY CANDAN
Yüksek Lisans
İngilizce
1998
Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. HALDUN ÖZAKTAŞ