Inventory counting by a deep learning based object detection model in stock yard of an urban furniture manufacturer
Kent mobilyaları üretim firmasına ait stok sahasında derin öğrenme tabanlı bir nesne algılama modeli ile stok sayımı
- Tez No: 895626
- Danışmanlar: DR. ÖĞR. ÜYESİ ABDULLAH HULUSİ KÖKÇAM
- Tez Türü: Yüksek Lisans
- Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
- Anahtar Kelimeler: Derin Öğrenme, Evrişimli Sinir Ağları, Nesne Algılama, YOLO, Envanter Sayımı, Envanter Sayım Araçları, Kent Mobilyaları Envanter sayımı
- Yıl: 2024
- Dil: İngilizce
- Üniversite: Sakarya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Endüstri Mühendisliği Bilim Dalı
- Sayfa Sayısı: 95
Özet
Özet yok.
Özet (Çeviri)
Inventory counting is a critical financial process for organizations, as it ensures accurate reporting of raw materials, components, and finished products within production and logistics operations. Precise inventory counts are essential for preventing financial losses that arise from discrepancies between recorded and actual quantities. Accurate counts help avoid issues such as overstocking, which leads to unnecessary expenses, and understocking, which can disrupt production processes. The use of computer vision in inventory counting offers a promising approach to enhancing accuracy and efficiency, addressing the limitations inherent in traditional methods. Manual inventory counting, while effective for small quantities of neatly arranged items, becomes increasingly problematic with larger and more complex stockpiles. The process is labor-intensive and time-consuming, particularly when dealing with extensive volumes of diverse products. Traditional methods such as Radio Frequency Identification (RFID) and barcode/QR code scanning face significant limitations. RFID signals can be obstructed by materials like concrete, and barcode/QR code labels are susceptible to weather conditions and adherence issues, leading to inaccuracies in counting and inefficiencies in inventory management. To address these challenges, this study explores the application of computer vision and deep learning techniques, specifically Convolutional Neural Networks (CNNs), to improve inventory counting. The methodology involved creating a unique dataset of images of selected products, categorized into four classes, and performing object labeling on hundreds of images. Data augmentation techniques were employed to enhance the robustness of the model. The YOLOv10 (You Only Look Once version 10) model was then trained using the augmented dataset to perform object detection and counting. The results of the study indicated Mean Average Precision(mAP) score of %86.9 that the YOLOv10 model successfully counted products in various scenarios, demonstrating the potential of computer vision to enhance inventory accuracy. Metrics and visualizations revealed that the model was effective in certain contexts, though limitations were observed, particularly in handling complex inventory scenes and specific product types. The study concludes that while computer vision and deep learning offer significant improvements over traditional methods, further refinements and additional research are needed to address the identified challenges and optimize inventory counting processes.
Benzer Tezler
- Semi - autonomous warehouse counting system
Yarı otonom depo sayım sistemi
GİZEM MELİKE CİDAL
Yüksek Lisans
İngilizce
2020
Mekatronik MühendisliğiYıldız Teknik ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ HÜSEYİN ÜVET
- Türkiye yaban hayatı geliştirme sahası envanterlerinin değerlendirilmesi
Evaluation of Turkey wildlife development areas inventory
AYGÜN KÖSE ÇITLAK
Yüksek Lisans
Türkçe
2019
Ormancılık ve Orman Mühendisliğiİstanbul Üniversitesi-CerrahpaşaOrman Mühendisliği Ana Bilim Dalı
DOÇ. DR. ZEYNEL ARSLANGÜNDOĞDU
- Maliyet kontrolü açısından tıbbi malzemelerin standart maliyet yöntemine göre varyans analizi: Bir üniversite hastanesi örneği
Analysis of variance of medical materials according to standard cost method in terms of cost control: A university hospital example
FİGEN ÇİVİ
Yüksek Lisans
Türkçe
2021
Sağlık Kurumları YönetimiDüzce ÜniversitesiSağlık Yönetimi Ana Bilim Dalı
PROF. DR. ENVER BOZDEMİR
- İlkokul dördüncü sınıf öğrencilerinin akıcı okuma becerilerini geliştirmede tekerlemelerin etkisi
The effect of rhymes on the development of fluent reading skills of 4th graders in primary school
ZEYNEP YILMAZ ALKAN
Yüksek Lisans
Türkçe
2019
Eğitim ve ÖğretimOrdu ÜniversitesiTemel Eğitim Ana Bilim Dalı
DOÇ. DR. KEZİBAN TEKŞAN
- İnmeli hastalarda ziyaret sürecinin vital bulgular ve anksiyete üzerine etkisi
The effect of visitings on vital signs and anxiety of the stroke patients
NURDAN CAMBAZTEPE
Yüksek Lisans
Türkçe
2014
HemşirelikGATAİç Hastalıkları Hemşireliği Ana Bilim Dalı
DOÇ. DR. HATİCE ÇİÇEK