Geri Dön

Polianilin ve polidopamin kopolimerlerinin sentezi, PbI2 ile doplanması ve spektroskopik incelenmesi

Synthesis of polyaniline and polydopamine copolymers, doping with PbI2 and spectroscopic investigation

  1. Tez No: 898331
  2. Yazar: MERVE HERCAN MAMMAD
  3. Danışmanlar: PROF. DR. MUSTAFA GÜLFEN
  4. Tez Türü: Doktora
  5. Konular: Polimer Bilim ve Teknolojisi, Polymer Science and Technology
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: Türkçe
  9. Üniversite: Sakarya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Kimya Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 146

Özet

Polianilin (PANİ); başta sensörler, güneş pilleri, süper kapasitörler olmak üzere bir dizi tıbbi, korozyon önleyici ve elektronik uygulama için umut verici özellikleri nedeniyle son yıllarda en dikkat çeken iletken polimerlerden biri olmuştur. PANİ ayrıca; biyouyumluluk, hidrofilik doğa, düşük toksisite, iyi çevresel stabilite ve basit sentez yöntemleri gibi önemli özelliklere de sahiptir. Polidopamin (PDA); güçlü yapışma, iyi esneklik, uzun süreli kararlılık, hidrofiliklik, foto termal özellikler ve biyouyumluluk gibi birçok farklı özelliğe sahiptir. PDA, biyomedikal, biyoalgılama, biyo-görüntüleme, antibakteriyel kaplama, UV-koruma, ilaç dağıtımı, doku mühendisliği, metal-iyon şelatlama ve katalizör malzemeleri gibi birçok araştırma alanında kullanılmaktadır. Kopolimerizasyon, polimerlerin çözünürlüğünü ve işlenebilirliğini geliştirmek için kullanılır ve kopolimerler homopolimerin bireysel özelliklerini içerir. Bu çalışmada, anilin ve dopamin monomerlerinden, polianilin (PANİ), polidopamin (PDA) homo polimerleri ve poli(dopamin-ko-anilin) (P(DA-ko-ANİ)) kopolimerleri 50:50, 25:75, 75:25 mol oranlarında, yükseltgen olarak amonyum persülfat kullanılarak kimyasal oksidasyon yöntemiyle sentezlenmiştir. Sentezlenen polimerler UV-gör. bölge absorpsiyon spektrokopisi, optik bant aralığı enerjileri, fluoresans (FL) emisyon spektrokopisi, FT-IR, SEM-EDS, MALDI-TOF-MS, XRD ile elektrik iletkenlikleri incelenmiştir. PANİ, PDA homo polimerlerinin ve P(DA-ko-ANİ) 50:50, 25:75 ve 75:25 kopolimerlerinin PbI2 ile doplaması yapılmıştır. PbI2 doplaması yapılan polimerler UV-gör. bölge absorpsiyon spektroskopisi ve FL emisyon spektroskopisi ile incelenmiştir. PANİ ve PDA homo polimerlerinin, ve P(DA-ko-ANİ) 50:50, 25:75 ve 75:25 kopolimerlerinin PbI2 ile doplaması yapılmıştır. PbI2 doplaması yapılan polimerler UV-gör. bölge absorpsiyon spektroskopisi ve FL emisyon spektroskopisi ile incelenmiştir. P(DA-ko-ANİ) kopolimerinin NMP ve DMF çözücülerinde kolaylıkla çözündüğü gözlenmiştir. PbI2 ile doplanmış ve doplanmamış polimerlerin UV-gör. bölge absorpsiyon verileri kullanılarak direk ve indirek geçişli bant aralığı enerjileri hesaplanmıştır. P(DA-ko-ANİ) 50:50 kopolimeri için elde edilen sonuçlar PDA ve PANİ polimerleri ile karşılaştırılmıştır. P(DA-ko-ANİ) polimer filminin direk geçişli optik bant aralığı enerjisi 3,40 eV ve direk geçişli optik bant aralığı enerjisi 1,00 eV olarak bulunmuştur. PbI2 doplandığında direk geçişli optik bant aralığı enerjisi 2,40 eV'a ve indirek geçişli optik bant aralığı enerjisi 0,40 eV'a düştüğü bulunmuştur. Fluoresans ölçümlerinde, P(DA-ko-ANİ) 50:50 kopolimeri FL emisyon maksimum bantları 390 ve 533 nm dalga boylarında gözlenmiştir. P(DA-ko-ANİ) 50:50 kopolimerine PbI2 bağlanma dengesi sabitleri, FL emisyon verileri kullanılarak Stern-Volmer ve Modifiye Stern-Volmer'e göre hesaplanmıştır. PbI2 bağlanmasının Stern-Volmer sabiti KSV değeri 1,57 x 104 M-1 olarak bulunmuştur. Bağlanma denge sabiti sabiti Ka, 3,02 x 107 M-1 olarak ve bağlanma sayısı n, 1,4211 olarak hesaplanmıştır. FL emisyon giderme yöntemine göre yapılan ölçümlerde PbI2, P(DA-ko-ANİ) 50:50 kopolimerine yüksek bağlanma denge sabitine sahip olguğu gözlenmiştir. SEM görüntülerinden P(DA-ko-ANİ) 50:50'nin asidik ortamda hazırlanan numuneleri 0-1500 nm kristal dikdörtgen partiküllere ve bazik ortamda hazırlanan numuneleri 0-600 nm amorf partiküllere sahip olduğu gözlemlenmiştir. PbI2 doplanan P(DA-ko-ANİ) 50:50 kopolimerinin XRD patterninde amorf faz gözlenmemiş ve yalnızca PbI2 kristallerinin XRD pikleri gözlenmiştir. P(DA-ko-ANİ) 50:50-Asit ve P(DA-ko-ANİ) 50:50-Baz formlarının elektriksel iletkenlikleri sırasıyla 2,25 x 10-5 ve 8,50 x 10-5 S/cm olarak ölçülmüştür. MALDI-TOF-MS ölçümlerinde kopolimerin ortalama molekül ağırlığı 2628 Da ve 5500 Da'a kadar dağılım gösterdiği bulunmuştur. NMP ve DMF çözücülerinde çözünebilen ve düşük optik bant aralığı enerjisine sahip P(DA-ko-ANİ) kopolimeri, biyomedikal uygulamalarda optik, fluoresans ve yarı iletken malzeme olarak kullanılabilir.

Özet (Çeviri)

Polydopamine (PDA) is recognized for its compatibility with biological systems and draws inspiration from nature. As a material inspired by natural processes, PDA features functional groups like dihydroxy (catechol), quinone (o-quinone), amine, and imine, which are central to its distinctive characteristics, as highlighted in various studies (Batul, et al., 2017; Mrówczyński, et al., 2016; Ho and Ding, 2014). It mimics the adhesive capabilities of mussel foot proteins by incorporating high levels of catechol, alongside primary and secondary amines, thanks to components like 3,4-dihydroxy-Lphenylalanine, lysine, and histidine (Ryu, et al., 2018; Kord Forooshani and Lee, 2017; Hemmatpour, et al., 2023). The versatility of PDA is underscored by its properties, including significant adhesion strength, stability, biocompatibility, and photothermal activity (Zhou, et al., 2022; Niezni, et al., 2022). Its applications are wide-ranging, from antibacterial treatments and sensory devices to biomedical imaging, drug delivery, tissue engineering, catalytic processes, and metal ion chelation (Huang, et al., 2020; Massoumi, et al., 2020; Shen, et al., 2018; Tan, et al., 2018; Ghorbani, et al., 2019; Fu, et al., 2021; Yang, et al., 2021, Wang, et al., 2020; Ball, et al., 2018; Zahidova, et al., 2023). The synthesis of PDA is straightforward, achieved through self-polymerization in alkaline aqueous solutions (pH > 7.5) with atmospheric oxygen (Deng, et al., 2018; Liu, et al., 2014), or using various oxidants ((NH4)2S2O8, CuSO4+H2O2, NaIO4, and KClO3) in a range of pH settings to produce polydopamine not only in alkaline but also in acidic and neutral aqueous environments (Deng, et al., 2018; Feng, et al., 2012). Methods such as plasma treatment, electrochemical, and enzymatic oxidation approaches have also been utilized. The pioneering work of Lee et al. in 2007 introduced the oxidative polymerization of dopamine to produce PDA, which can be coated on numerous surface types thanks to molecular interactions like covalent bonds, metal coordination, and more (Lee, et al., 2007). It shows molecular interactions which consist of covalent bonding, metal coordination, H-bonding, π-π and cation--π interactions (Lee, et al., 2020; Liebscher, 2019). In 2007, the Messersmith group demonstrated that dopamine is easily polymerized by oxidative polymerization and can be easily coated on any surface. The most important advantage of the polymerized polydopamine is its ability to deposit on any organic or inorganic surface, including superhydrophobic surfaces, with controllable film thickness and durability. Thus, polydopamine has revolutionized the modification of many different surfaces and has enabled extensive research (Liu, et al., 2014; Yang, et al., 2015). This has significantly expanded surface modification research and applications. PDA presents as a dark brown-black insoluble biopolymer, produced by the in-situ polymerization of dopamine (Batul, et al., 2017). Polyaniline (PANI) is distinguished as a conductive polymer, celebrated for its noteworthy features such as electrical conductivity, compatibility with biological tissues, affinity for water, low toxicity, substantial stability against environmental factors, and simple production techniques. These advantages are evidenced by multiple studies (Bhadra, et al., 2009; Xiao, et al., 2023, Zare, et al., 2019). Additionally, PANI's fabrication is straightforward, and it showcases a wide range of electrical conductivities as well as exceptional resistance to environmental, thermal, and chemical adversaries. However, the applicability of PANI faces hurdles due to its poor processability, low degradability, and insolubility in many common solvents, as pointed out by Zare et al. (2019) and Samadi et al. (2021). Current researchs aim to mitigate these drawbacks by exploring PANI in composite forms, blends, or as copolymers, attracting interest for their distinct electrical traits and other attributes such as ease of synthesis, cost-effectiveness, superior environmental stability, and diverse functionalities like reactive NH groups, electrochemical, and optoelectronic features (Samadi, et al., 2021). Typically, PANI is synthesized via chemical or electrochemical oxidation methods in acidic conditions, using or not using doping agents. In the chemical oxidation, a variety of oxidizing agents and doping reagents like ammonium persulfate, hydrogen peroxide, ferric chloride, and others have been employed (Beygisangchin, et al., 2003; Ayad, et al., 2003; Bernasik, et al., 2005; Krishna, et al., 2005; Wang and Tan, 2006). PANI is most commonly encountered as a green protonated emeraldine salt with an average conductivity of 1 S/cm, marking a conductivity higher than that of many polymers but lower than metals (Stejskal and Gilbert, 2002). In the synthesis outcomes of PANI, both fully reduced amine and fully oxidized imine forms exhibit insulating properties (Trychova, et al., 2006). Copolymerization is employed in general to improve the solubility and processing of polymers. Copolymers embody the characteristics that are intermediate to those of homopolymers drawn from individual monomers (Zareh, et al., 2021). Various PANI copolymers have been synthesized and characterized in literature. For instance, Sankar, et al. (2023) produced a copolymer named poly(aniline-co-indole) (PANI-co-PIN) along with its nanocomposites featuring Cu-Al2O3, highlighting significant optical, conductivity, and dielectric properties that render them ideal for optoelectronic applications and charge storage devices (Sankar, et al., 2023). Similarly, the poly(aniline-co-pyrrole) (PANI-co-PPy) copolymer was synthesized, forming composites with reduced band gap energies (Sankar, et al., 2022). Such copolymers, including PANI-co-PIN and PANI-co-PPy, have also been utilized for NH3 gas sensing (Sankar, et al., 2022). Moreover, Tan, et al. (2018). crafted dopamine-modified polyaniline through a one-step chemical oxidation process, mixing aniline monomer with dopamine hydrochloride and ammonium persulfate in an acidic medium, examining various characteristics like FTIR, SEM, and their electrical conductance and cytotoxicity (Tan, et al. 2018). Moosaipour and colleagues (2022) created a random copolymer, polyaniline-co-polydopamine (PANI-co-PDA), blending it with poly(vinyl alcohol) (PVA) to fabricate nanofibers and investigate their electrical conductance, mechanical strength, and biodegradability (Moosaipour, et al., 2022).. Chen, et al. (2019) explored polydopamine-modified polyaniline/nanodiamond ternary hybrids, examining their electromagnetic absorption characteristics (Chen, et al., 2019). Poly(dopamine-co-aniline) (poly(DA-co-ANI)) has been noted for its application in blends or composites with materials such as graphene oxide/poly(DA-co-ANI) and poly(DA-co-ANI)/calcium phosphate, indicating a trend towards innovative material composites (Yang, et al., 2019; Huang, et al., 2022; Paknia, et al., 2022). In our research, we synthesized a novel copolymer, poly(dopamine-co-aniline) (poly(DA-co-ANI)), through the chemical oxidation polymerization process where aniline and dopamine monomers were polymerized using ammonium persulfate in a hydrochloric acid solution. This copolymer underwent a series of detailed analyses, such as UV–visible spectrophotometry, fluorescence (FL) emission spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), field-emission scanning electron microscopy - energy dispersion x-ray spectroscopy (FE-SEM-EDS), x-ray diffraction (XRD), and tests for electrical conductivity to elucidate its characteristics. Our investigations revealed that poly(DA-co-ANI) copolymer is readily dissolved in N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) solvents. Additionally, we calculated the homo polymers' and copolymer's optical band gap energies using the data from UV–visible absorption analysis. The copolymer was compared with PANI and PDA homopolymers, which were synthesized under similar conditions, to highlight that copolymerization significantly enhances polymer solubility and processability Specifically, the optical band gap energy for direct transitions of the poly(DA-co-ANI) polymer film was measured as 3.40 eV, while the indirect transition was measured as 1.00 eV. Significantly, doping the copolymer with PbI2 lowered the direct transition optical band gap energy to 2.40 eV and the indirect transition to 0.40 eV. The FL emission bands of the poly(DA-co-ANI) copolymer were observed at 390 and 533 nm as the maximum wavelengths, while the PANI showed FL amission at about 400-410 nm, the PDA showed FL amission at about 410-430 nm. The PbI2 binding equilibrium constants of P(DA-co-ANI) 50:50 copolymer were calculated according to Stern-Volmer and Modified Stern-Volmer using FL emission quenching data. The Stern-Volmer constant KSV value of the PbI2 binding was found to be 1.57 x 104 M-1. The binding equilibrium constant constant Ka was calculated as 3.02 x 107 M-1 and the number of binding sites n was calculated as 1.4211. In the measurements made according to the FL emission quenching method, PbI2 has a high binding equilibrium constant to the P(DA-co-ANI) 50:50 copolymer. SEM analysis showed that the copolymer forms crystalline rectangular particles ranging in size from 0 to 1500 nm under acidic conditions, and amorphous particles ranging from 0 to 600 nm under basic conditions. The PbI2 doped copolymer has very different particle sizes. The XRD pattern of the copolymer doped with PbI2 showed no amorphous phases, only the crystalline peaks of PbI2. The copolymer's electrical conductivity was found to be 2.25 x 10-5 S/cm in its acidic form and 8.50 x 10-5 S/cm in its basic form. Additionally, the average molecular weight of the copolymer was determined to be 2628 Da, extending up to 5500 Da through MALDI-TOF-MS measurements. Given its solubility in NMP and DMF, along with its low optical band gap energy, poly(DA-co-ANI) doped with PbI2 is identified as a prospective material for applications in light absorption, fluorescence emission, and semi-conductivity.

Benzer Tezler

  1. Preperation and investigation of electrical properties of poly (2-aminophenol) and its composites

    Poli(2-aminofenol) ve kompozitlerinin hazırlanması ve elektriksel ölçümlerinin incelenmesi

    FATMA TUBA ÇOĞALMIŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Polimer Bilim ve Teknolojisiİstanbul Teknik Üniversitesi

    Polimer Bilim ve Teknolojisi Ana Bilim Dalı

    PROF. DR. BAHİRE FİLİZ ŞENKAL

    DOÇ. DR. MUSTAFA OKUTAN

  2. Polianilin ve kloro sülfolanmış polietilenden tabakalı kaplama yolu ile ince film oluşturulması ve radyasyonla başlatılan iletkenliğin incelenmesi

    Layer-by-layer assembly of polyaniline and chlorosulfonated polyethylene and investigation of their radiation induced conductivity

    BEGÜM YARAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2013

    KimyaHacettepe Üniversitesi

    Kimya Bölümü

    PROF. DR. OLGUN GÜVEN

  3. Polianilin-pomza kompozitinin elektriksel ve optik özelliklerinin incelenmesi

    Investigation of the electrical and optical properties of polyaniline-pumice composite

    ASIM AKGÖZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    Fizik ve Fizik MühendisliğiPamukkale Üniversitesi

    Fizik Ana Bilim Dalı

    YRD. DOÇ. KORAY YILMAZ

  4. Polianilin ve poli(2-iyodoanilin) çift kaplaması ile polianilin ve poli(2-toluidin) çift kaplamasının korozyon performansları

    Corrosion performances by multilayered polyaniline and poly(2-iodoaniline) with polyaniline and poly(2-toluidine) coatings

    DERYA ÖZDEMİR

    Yüksek Lisans

    Türkçe

    Türkçe

    2008

    KimyaEskişehir Osmangazi Üniversitesi

    Kimya Ana Bilim Dalı

    PROF. DR. GÖZEN BEREKET

  5. Polianilin ve türevleri ile pvc nanokompozitlerin sentezlenmesi ve gamma radyasyonunun etkisinin incelenmesi

    Synthesis of polyaniline and its derivatives with pvc nanocomposites and research of gamma radiation impact

    EMEL COŞKUN

    Yüksek Lisans

    Türkçe

    Türkçe

    2013

    KimyaHitit Üniversitesi

    Kimya Mühendisliği Ana Bilim Dalı

    DOÇ. DR. UĞUR ADNAN SEVİL