Sakarya ili katı atık düzenli depolama sahasında depo gazının (LFG) izlenerek enerji elde etme potansiyelinin değerlendirmesi
Sakarya province solid waste landplace by monitoring storage gas (LFG) on site assessment of energy processing potential
- Tez No: 905323
- Danışmanlar: DOÇ. DR. ALİYE SUNA ERSES YAY
- Tez Türü: Doktora
- Konular: Çevre Mühendisliği, Environmental Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2024
- Dil: Türkçe
- Üniversite: Sakarya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Çevre Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Çevre Mühendisliği Bilim Dalı
- Sayfa Sayısı: 237
Özet
Bu çalışma da; Sakarya ili katı atık düzenli depolama sahasında 2013 ile 2018 yılları arasında portatif gaz ölçüm cihazı ile gaz emisyon potansiyeli her ay peryodik olarak, toplamda 58 ay boyunca izlenmiş ve elde edilen verilerden enerji dönüşümü verimliliği değerlendirilmiştir. (2009-2068) yılları arası, 59 yıllık teorik metan potansiyeli hesaplamasın da“Afvalzorg-Weber-LMOP-Scholl Canyon-Tabasaran-TNO-LandGEM-IPCC”modelleri kullanılmıştır. Hesaplamalar da kullanalan (k) katsayı değerleri“0,05-0,06-0,09-0,185”IPCC 2006 yönergesinden elde edilmiştir. Sahadaki sızıntısuyu verileri“KOİ-BOİ-pH-Sıcaklık”sahanın yağış ve nem değerleri ayrıca sahada ölçülen metan değerleri kullanılarak excel regresyon hesaplamasında (k=0,45) katsayı değeri bulunmuştur. Sahadan toplanan katı atık numuneleri ile laboratuvarda iki adet reaktör kurulmuştur. Reaktörlerdeki sızıntısuyu verileri“Sıcaklık-pH-KOİ-İletkenlik”ve metan değerleri kullanılarak excel regresyon hesaplamasında (k=0,60) katsayı değeri bulunmuştur. EPA'nın (Lo) değerleri dikkate alınarak model hesaplamaların da (Lo=157) değeri kabul sayılmıştır. (2009-2068) yılları arası, 59 yıllık teorik metan hesaplamasın da, tüm (k) değerlerinin karşılaştırmasın da;“Weber (k=0,05) göre; 1.753.212.239 – Weber (k=0,06) göre ; 1.812.523.382 – Weber (k=0,09) göre; 1.870.650.180 – Afvalzorg (k=0,185) göre; 1.924.869.601 – Afvalzorg (k=0,45) göre ; 4.682.115.245 – Afvalzorg (k=0,60) göre ; 6.242.820.326”m3/yıl en yüksek metan potansiyelleridir. Sahada ölçülen metan miktarı ve teorik hesaplanan metan potansiyeli karşılıklı olarak değerlendirildi. Ayrıca 2019 yılında tesisde üretilen elektrik enerjisinin, modellerden hesaplanan elektrik enerji değerleri ile karşılık olarak değerlendirildi. Saha daki 19 adet gaz bacalarından 2013 ile 2018 yılları için en yüksek metan salınımı“GB17-GB23-GB25-GB22-GB18-GB19-GB20-GB24”numaralı gaz bacalarında belirlenmiştir. Özellikle GB24 numaralı gaz bacasının grafik değeri modellerin altı yıllık grafik değerleri ile benzerlik göstermektedir. Tesisde 2019 yılı için üretilmiş 42.000 kWh toplam elektrik enerjisi ile tüm (k) değerlerinin karşılaştırmasın da hesaplanan enerji dönüşümleri, özellikle ( Weber (0,185) göre; 42.847,26 - Weber(k=0,45) göre; 47.948,70 – Scholl Canyon(0,185) göre; 42.119,16 ) kWh enerji değerleri ile Tesisdeki üretime en yakın modellerin Weber ve Scholl Canyon olduğu görülmektedir. 59 yıllık elektrik enerjisi hesaplamalarında, tüm (k) değerlerinin karşılaştırmasında;“Weber(k=0,05) göre; 1.303.226,68 – Weber(k=0,06) göre; 1.347.314,82 – Weber (k=0,09) göre; 1.390.522,59 – Afvalzorg(k=0,185) göre; 1.430.825,86 – Weber(k=0,45) göre; 3.480.387,24 – Afvalzorg(k=0,60) göre; 4.640.516,33 ”kWh değerleri ile en yüksek verimli modeller Weber ve Afvalzorg modelleridir. Katı atık düzenli depolama sahasında 19 adet gaz bacasından 2013 ile 2018 yılları arasında ölçülen metan gazında toplamda 44.726,33 m3/saat metan gazı salınımı olmuştur. Bu salınım tesisde şuan mevcut olan bir adet gaz motorunun 6 yılda üretebileceği 2.264.832.000 kWh'lik enerji potansiyelini karşılayabilir.
Özet (Çeviri)
Located 15 km away from Sakarya city centre, between latitude-longitude coordinates (30.40 and 40.84), with an altitude of 31 m above sea level, established on an area of 17.6 hectares (total section area), Sakarya solid waste sanitary landfill consists of 3 sections. Is coming. The 1st section, which has an area of 9.7 hectares, started to receive waste in (2009). Its capacity is sufficient to store municipal wastes within the borders of Sakarya Metropolitan Municipality for approximately ten years. In the first section, 1,748,600 tons of trash will be stored from the start of waste acceptance until 2024. In this study, the gas emission potential of 19 gas chimneys located in the Sakarya province solid waste landfill was monitored periodically every month with a portable gas measuring device between 2013 and 2018 for 58 months. The data obtained were used for weather modelling of the field, emission gas forecast modelling, and energy conversion efficiency evaluation. Geotech biogas 5000 brand portable analyzer was used for landfill gas measurements. Measurements were made on gas chimneys by insulating them with sponge covers and pet covers to prevent gas leakage. According to the six-year total methane (m3/hour) emission values measured from 19 gas chimneys in the solid waste landfill between 2013 and 2018, Among the 19 gas chimneys, the graphs of gas chimneys numbered GB23 and GB22 first increased and then decreased again. Although there was a partial increase in the graphs of the other gas chimneys numbered“GB25-GB22-GB18-GB19-GB20”, a decrease in methane emissions was generally observed. Despite the short depth of 6 m, the gas chimney numbered GB25 showed an excellent methane release performance according to the high methane release value of 3,713.19 m3/hour. Gas chimney numbered GB17 is the gas chimney that gives the second highest methane emission value. Even though there is a partial decrease after the rapid increase in the graphic values, it has maintained its methane emission potential at a certain level. Gas emission release performances of gas chimneys in the field have varied. Factors such as the operation of the site, the climatic conditions of the region, the characteristics of the garbage waste, the leachate factor and the depth of the garbage layers create these differences. Gas chimney numbered GB23 is the deepest gas chimney with a depth of 32.5 m and is also the most efficient chimney with the highest methane gas emission value with a total methane gas value of 5388 m3/hour. In general, when we minimize the negative factors affecting gas formation in gas chimneys, the measurement values we obtain from the field will confirm the theoretical values we will get. ArcGIS 10.3 software was used to air-model emission gases emitted in the field. The inverse distance weighted interpolation method (IDW) was applied to the software content. Inverse distance weighting interpolation estimates unknown values by specifying the degree of cell value at the closest points of the search distance. Interpolated points are calculated based on their distance from known cell values. Points closer to known values will be more affected than points further away. As a result of the model, when we examine the colour scale, brown and yellow are the regions with the highest gas emission density and the areas with the highest depth of the garbage layer. The blue and white regions are regions where the garbage layer depth is relatively shallow and gas emission density decreases. Landfill gas models are numerical calculations used to estimate the amount of methane that can be obtained from solid waste collected in landfills over time. Landfill gas models can be generally divided into“Simple Empirical Models”and“Complex Models”. To classify the models in more detail, They can also be classified as zeroth order, first order, second order, multiphase, or a combination of different orders. The most crucial input data when modelling landfill gas are the methane gas potential (Lo), methane gas production constant (k), and period (t)—general input data used in the equations of the models. Specific coefficients are waste mass, total organic carbon, Methane gas potential (Lo), methane gas production constant (k), time (t) and exponential decay factor ( e –k.t). Taking into account the climatic conditions of Sakarya City and the garbage characteristics in the regular solid waste site, fixed data and solid waste are obtained from the methane production rates (k = 0.05 - k = 0.06 - k = 0.09 - k = 0.185) in the IPCC 2006 greenhouse gas inventory directive. In addition to the“COD-BOD-pH”data from the leachate samples in the landfill, the constant data (k=0.45) obtained from Excel regression calculation using meteorological data such as“Humidity-Temperature-Precipitation”obtained from the meteorology station directorate of Sakarya city was also submitted to the EPA. The methane production potential was determined as Lo = 157 m3/hour. Also, in the Landgem model, the fixed values (k=0.05) and (Lo=170) in the EPA were used because they gave meagre results compared to the fixed values (k) and (Lo) given in IPCC 2006. Estimated methane production for the field was calculated using these fixed values on the“Afvalzorg-Weber-LMOP-Scoll Canyon-Tabasaran-TNO-Landgem-IPCC”models. Model calculations started in 2009 and were completed in 2068 for 59 years. With the solid waste samples collected from the field, two reactors made of transparent plexiglass material, each with a diameter of 30 cm, a height of 50 cm and a volume of 35 L, were installed in the laboratory of Sakarya University Faculty of Environmental Engineering. Thirty-eight measurements of the leachate data“Temperature-pH-COD-Conductivity”and methane values in the reactors were made in two weeks. In gas concentration analysis, (He) gas is given to the Shimadzu GC-2014 brand gas chromatography (GC) device, the gas chromatography device is turned on, and the detector inside the device waits to warm up. When the detector rises to a certain temperature level (250 ℃), a special syringe is used from the gas-filled gas bags in the reactors. The reading starts by drawing gas at a specific rate, injecting it into the gas chromatography device, and pressing the start button for approximately 40 minutes. Then, the reading takes place. This process is done separately for both reactors. Regression calculations were made in Excel for two reactors separately from the“Temperature-Conductivity-pH-COD-Methane”data obtained from the reactors' analysis. The calculation results found a typical coefficient of 0.60 for both reactors. Here, methane data is considered the dependent variable and other data is the independent variable. Additionally, organic waste was 40% of the calculations. In the 59-year theoretical methane calculation between the years (2009-2068), comparison of all (k) values;“According to Weber (k=0.05); 1.753.212.239 – According to Weber (k=0.06); 1.812.523.382 – According to Weber (k=0.09); 1.870.650.180 – According to Afvalzorg (k=0.185); 1.924.869.601 – According to Afvalzorg (k=0.45); 4.682.115.245 – According to Afvalzorg (k=0.60); 6,242,820,326”m3/year is the highest methane potential. The amount of methane measured in the field and the theoretically calculated methane potential were evaluated mutually. Of the 19 gas chimneys in the field, the highest methane emissions between 2013 and 2018 were determined in the gas chimneys numbered“GB17-GB23-GB25-GB22-GB18-GB19-GB20-GB24”. In particular, the graphic value of the gas chimney numbered GB24 is similar to the six-year graphic values of the models. In 2019, the electrical energy produced at the facility was evaluated in response to the electrical energy values calculated from the models. Calculated energy conversions of all (k) values with 42,000 kWh total electrical energy produced in the facility for 2019, especially according to“Weber (0.185); 42,847.26 - According to Weber(k=0.45); 47,948.70 – According to Scholl Canyon (0.185); It is seen that the models closest to the production at the Facility are Weber and Scholl Canyon, with energy values of 42,119.16 kWh. In evaluating the electrical energy conversions of the models, Estimated methane release results calculated according to methane production constants (k=0.05 - k=0.06 - k=0.09 - k=0.185 - k=0.45 – k=0.60) show the calorific value of 5600 kcal methane. The required formulation calculation converted methane (m3/year) values (kWh) into electrical energy. In the comparison of all (k) values in 59 years of electrical energy calculations, ”According to Weber (k=0.05); 1,303,226.68 – According to Weber(k=0.06); 1,347,314.82 – According to Weber (k=0.09); 1,390,522.59 – According to Afvalzorg(k=0,185); 1,430,825.86 – According to Weber(k=0.45); 3,480,387.24 – According to Afvalzorg(k=0.60); The highest efficiency models with 4,640,516.33 kWh values are Weber and Afvalzorg models. Energy conversions obtained from models are minimum estimated values. There are currently three gas engines in the field with an energy capacity of 4.5 MW. The monthly production capacity of one of these gas engines is 31,456,000 kWh. If 31,456,000 kWh is produced monthly for six years with a total methane value of 44,726.34 m3/hour determined between 2013 and 2018, a total of 2,264,832,000 kWh of energy will be obtained in six years. If we accept 50% of this value as absolute values, we reach an energy value of 1,132,416,000 kWh. The monthly electrical energy need of an average house is 200 kWh. According to these values, the energy needs of 78,640 households can be met in six years. These results are promising.
Benzer Tezler
- Sakarya ili katı atık düzenli depolama sahası sızıntı sularının gen ifadeli programlama ile modellenmesi
Modeling of sakarya landfill leachate using gene expression programming
ORHAN YILMAZ
Yüksek Lisans
Türkçe
2019
Çevre MühendisliğiSakarya ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BEYTULLAH EREN
- Aerobik düzenli depolama biyoreaktörlerinde gümüş nanopartiküllerin mikrobiyal çeşitliliğe etkilerinin FISH (Fluorescence in situ hybridization) yöntemi ile incelenmesi
Investigation of the effects of silver nanoparticules on the microbial diversity of aerobic bioreactor landfills by FISH (Fluorescence in situ hybridization) method
SÜHEYLA DURAN
Yüksek Lisans
Türkçe
2018
Çevre MühendisliğiSakarya ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ALİYE SUNA ERSES YAY
- Doğal taş ve mermer üretiminin çevresel etkileri ve atık yönetiminin incelenmesi: Bilecik ili örneği
Environmental effects of natural stone and marble production and waste management analysis: Example of Bilecik province
TUĞBA ÇİLENKOĞLU
Yüksek Lisans
Türkçe
2020
Çevre MühendisliğiSakarya ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
DOÇ. DR. ÖMER HULUSİ DEDE
- Yaşam döngüsü analizi ile sürdürülebilir katı atık yönetimi;Kocaeli ili örneği
Sustainable solid waste management with life cycle analysis for Kocaeli province
ECE BEGÜM BAKKALOĞLU
Yüksek Lisans
Türkçe
2022
Çevre MühendisliğiSakarya ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ALİYE SUNA ERSES YAY
- Sakarya ili entegre atık yönetimi ve ambalaj atıklarının geri dönüşümü
Integrated waste management and packaging waste recycle of Sakarya province
ŞEVHAN SAYAR
Yüksek Lisans
Türkçe
2012
Çevre MühendisliğiSakarya ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. A. SUNA ERSES YAY