Geri Dön

Fenoksi türevi beta sübstitüe yeni tip ftalosiyaninlerin sentezi ve karakterizasyonu

Synthesis and characterization of new type of phenoxy derivative beta-substituted phthalocyanines

  1. Tez No: 933274
  2. Yazar: ESEN MUTLU
  3. Danışmanlar: PROF. DR. MERYEM NİLÜFER YARAŞIR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Kimya, Chemistry
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: Türkçe
  9. Üniversite: Sakarya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Kimya Ana Bilim Dalı
  12. Bilim Dalı: Anorganik Kimya Bilim Dalı
  13. Sayfa Sayısı: 101

Özet

Ftalosiyanin kelime anlamı, Yunanca koyu mavi ve mineral yağ kelimelerinden türetilmiştir. Ftalosiyaninler, birden fazla izoindol birimlerinden oluştuğu bilindiği 18 π elektronları taşıyan büyük halka içeren yapılar olarak tanımlanır. Bu makrosikliklerdeki elektronların yaygın bir şekilde hareket etmesi, benzersiz optik ve elektriksel özellikler gösterir. Ftalosiyaninlerin nadir fiziksel özellikler sergilemesini sağlar. Boya ve polimer teknolojisi, ilaç endüstrisi, tıpda ve tarımda geniş bir yelpazede kullanılan bu bileşikler, özellikle çözünürlük sorunu çözüldüğünde daha geniş bir kullanım alanı bulabilirler. Metalli ftalosiyaninler, farklı metal iyonları kullanılarak oluşturulabilir ve çevresel pozisyonlara sübstitüentler eklendiğinde çözünürlük artar. Metal içermeyen ve periferal konumda sübstitüent içermeyen ftalosiyaninlerin organik çözücülerdeki düşük çözünürlüğü, potansiyellerini kısıtlar. Bu moleküllerin çözünürlüğü artırılmalı ve uygulama alanları genişletilmelidir. Ftalosiyaninler arasındaki güçlü moleküler etkileşimler, agregasyona neden olarak çözünürlüğü azaltır. Ftalosiyanin özelliklerinin belirlenmesi için IR, UV-Vis ve NMR gibi standart teknikler kullanılır. Bu teknikler, sübstitüentlerin ve merkezi metal atomunun Q-bandının görünür bölgedeki konumunu belirlemek için önemlidir. Bu çalışmada, sübstitüe olmamış ftalosiyanin bileşiğine göre uzun absorpsiyon dalga boyuna sahip yeni çinko (II) (2), bakır (II) (3) ve kobalt (II) (4) ftalosiyaninler sentezlenmiştir. 4-(3-kloro-4-florofenoksi) ftalonitril (1) başlangıç maddesi olarak kullanılmış ve moleküler yapısının doğrulanması için mono kristal X-ışını kırınımı (XRD) çalışması yapılmıştır. Sentez süreci, 4-(3-kloro-4-florofenoksi) ftalonitrilin (1) uygun reaksiyon ortamında belirli koşullarda reaksiyona girmesiyle başlar. Sonrasında elde edilen bileşikler çeşitli analiz yöntemleriyle karakterize edilmiştir. UV-Vis spektroskopisi, ftalosiyanin bileşiklerinin karakterizasyonunda önemli bir rol oynar. FT-IR spektrumları, bileşiklerin yapısal özelliklerini belirlemek için kullanılmıştır. 1H-NMR ve 13C-NMR spektroskopisi, bileşiklerin moleküler yapısını daha ayrıntılı olarak incelemek için kullanılmıştır. MALDI-TOF MS analizi, sentezlenen bileşiklerin doğruluğunu ispatlamak için yapılmıştır. Sonuç olarak, bu çalışma yeni ftalosiyanin bileşiklerinin sentezlenmesi ve karakterizasyonunu içermektedir. Sentezlenen bileşiklerin yapıları çeşitli analiz yöntemleriyle doğrulanmıştır. Bu çalışma, ftalosiyaninlerin geniş kullanımda olabilecek potansiyel özelliklerini anlamak için bir adım olarak görülebilir. Elde edilen sonuçlar, ftalosiyanin bileşiklerinin sentez ve karakterizasyonu alanındaki çalışmalara yeni bir perspektif sunmaktadır. Bileşiklerin çeşitli endüstriyel uygulamalarda kullanılabilirliğini daha iyi anlamamıza olanak sağlayacaktır.

Özet (Çeviri)

The word“phthalocyanine”comes from the Greek words“cyanine,”which means dark blue, and“naphtha,”which means mineral oil. The synthesis of phthalocyanine happened by accident in 1907; Reginald P. Linstead was working at the Imperial College London when he coined the term to introduced a novel group of organic compounds. Phthalocyanine complexes have garnered significant attention in recent years owing to their demonstrated technological capabilities. Moreover, the versatility of phthalocyanine complexes allows for tailored modifications to enhance their performance in specific applications. Recent research has also focused on elucidating the fundamental mechanisms underlying the unique properties of these compounds. The dye and polymer technology, the pharmaceutical industry, medicine, the description of the biological processes, agriculture and many other areas are greatly benefited from these compounds' properties. Therefore, the number of studies on the phthalocyanine complexes are increasing every day. However, the solubility of the compouds are one of the main problems, which can be used for high-tech applications. Therefore, preparing soluble phthalocyanine complexes are important as purpose-engineered to synthesize these substances with high technological features and pureness. Almost any metal ion can be used in place of two hydrogen atoms to create a variety of metal phthalocyanines. At the moment, approximately seventy different elements are used as the center atom in phthalocyanins. When substituents are added to peripheral positions, intermolecular distance rises and resolution improves. Phthalocyanines lacking metal and those with no peripheral substituents exhibit limited solubility in organic solvents, thus constraining their potential. Due to the strong intermolecular π - π interactions between phthalocyanine molecules, It causes the aggregation of phthalocyanine molecules, reducing their solubility. Phthalocyanine characterization also makes use of standard organic compound characterization techniques like elemental analysis, IR, NMR, and UV-Vis. Since substituents and the central metal atom affect the Q-band's position in the visible zone, this technique is crucial for understanding phthalocyanine. In this investigation, we have been successfully synthesized new zinc (II) (2), copper(II) (3) and cobalt (II) (4) phthalocyanines incorporating 3-chloro-4-fluorophenoxy groups, which exhibit extended absorption wavelengths compared to the unsubstituted phthalocyanine compound in the UV-visible spectra. Beginning with the synthesis of a novel an innovative precursor, 4-(3-chloro-4-fluorophenoxy) phthalonitrile (1), this compound's molecular structure was validated through a single crystal X-ray diffraction (XRD) analysis. To conclude, the synthesis of 4-(3-chloro-4-fluorophenoxy) phthalonitrile (1), as the initial compoun was achieved through a meticulously controlled process. It involved a reaction of about 3 days between 3-chloro-4-fluorophenol and 4-nitrophthalonitrile in dry DMF solvent at ambient temperature under nitrogen atmosphere, catalyzed by anhydrous K2CO3. Progress of the reaction was monitored periodically using TLC (thin layer chromatography) to ascertain completion, ensuring the integrity of the desired product's formation. Subsequently, the reaction mixture was terminated by pouring into about 300 mL of ice water. The resulting precipitate from the reaction mixture was carefully isolated through filtration, followed by thorough rinsing with water until the filtrate reached a neutral pH, ensuring the removal of any residual impurities. Subsequently, the obtained product underwent further purification to enhance its quality. This involved subjecting it to column chromatography using a CHCl3-MeOH eluent, with a ratio of 10 parts chloroform to 2 parts methanol by volume, allowing for effective separation based on polarity. Following purification, the compound was subjected to crystallization using a CHCl3-acetone solvent system (in a 5:1 volume ratio), resulting in the formation of the desired product (1) in the form of white transparent crystals. In order to synthesize phthalocyanines (2, 3, 4), we combined the starting material,“4-(3-chloro-4-fluorophenoxy) phthalonitrile (1),”with anhydrous metal salts (zinc (II) chloride, copper (II) chloride, or cobalt (II) chloride) in dry DMAE (N,N-dimethylaminoethanol) solvent (2 mL) supplemented with a catalyst concentration of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). The reaction was conducted under reflux conditions with stirring for ten hours. UV-Vis spectroscopy serves as in the comprehensive characterization of phthalocyanine compounds, providing valuable insights into their molecular structure and electronic properties. The distinct peaks observed in UV-Vis spectra offer key information about the nature of chemical bonds and the arrangement of atoms within these compounds. The Q band, situated between 600-800 nm, is particularly significant as it corresponds to transitions involving electrons in the molecular orbitals of the phthalocyanine system. Similarly, the Soret band (B), appearing between 300-400 nm, signifies electronic transitions within the central metal ion and the surrounding ligands, further elucidating the complex behavior of these compounds. When synthesized phthalocyanines (2, 3, 4) were analyzed in THF solvent, the Q band absorptions were found at 675 nm 673 nm and 669 nm respectively, which is similar to typical metallophthalocyanines. Moreover, the Soret (B) band absorptions, which are indicative of phthalocyanine formation, were found at 351 nm , 345 nm and 330 nm for compounds (2), (3) and (4) respectively. The FT-IR spectra revealed prominent peaks corresponding to the characteristic aromatic C-H and sharp C≡N vibrations of 4-(3-chloro-4-fluorophenoxy) phthalonitrile (1) at 3090 and 2237 cm-1, respectively. The IR spectra exhibited asymmetric and symmetric stretching vibrations characteristic of Ar-O-Ar at approximately 1246 and 1051 cm-1, respectively. Additionally, strong C-F stretching vibrations were prominently observed in the range of 1000-1300 cm-1. Conversely, in benzene derivatives incorporating chlorine groups, the stretching vibrations of C–Cl typically manifest within the range of 600-800 cm-1. Specifically, the FT-IR spectrum of 4-(3-chloro-4-fluorophenoxy) phthalonitrile (1) displayed strong stretching vibrations of C-F at 1308 cm-1 and C-Cl at 823 cm-1. Upon analyzing the FT-IR spectra of (2), (3), and (4), it was noted that the results closely resembled those of the ligand compound (1), with only minor shifts observed. Notably, as a consequence of the cyclotetramerization reaction, the vibration corresponding to the sharp –CN groups of 4-(3-chloro-4-fluorophenoxy) phthalonitrile (1) at 2237 cm-1 vanished, a significant indication supporting the formation of (2), (3), and (4). In the 1H-NMR and 13C-NMR spectra of 4-(3-chloro-4-fluorophenoxy) phthalonitrile (1), recorded in [d6]-DMSO solvent, the aromatic proton signals were detected within the range of 8.10-7.28 ppm. These signals appeared as follows: 1H doublet for protons ortho to –CN and meta to -OAr, 1H doublet for protons ortho to –CN and ortho to –OAr, 3H multiplet for protons ortho to –F, ortho to –Cl, and meta to –CN, and 1H multiplet for protons meta to -F. The corresponding carbon signals (ppm) for 4-(3-chloro-4-fluorophenoxy) phthalonitrile (1) were observed at 161.520, 150.864, 136.993, 129.262, 123.680, 123.336, 123.096, 122.042, 121.939, 119.186, 117.445, 116.548, 113.978, and 109.356. The MALDI-TOF MS analysis using Dithranol as the matrix and m/z scale produced data that aligns with the intended structures, thereby validating the structures of all compounds examined in this study. Specifically, in the MALDI-TOF MS analysis utilizing Dithranol as the matrix, the protonated ion peak of 4-(3-chloro-4-fluorophenoxy) phthalonitrile (1) was observed at a high intensity, appearing at m/z 273.298 [M+H]+, which is consistent with the molecular weight of the target compound (1). The synthesized phthalocyanines (2,3 and 4) had protonated ion peaks of 1156.301 [M]+ , 1154.235 [M]+ and 1150.196 [M+H]+ respectively.

Benzer Tezler

  1. Propiyo fenoksi türevi ftalosiyanin bileşiklerinin sentezi ve karakterizasyonu

    The synthesi̇s and characterization phthalocyanines wi̇th propi̇ophenoxy derivative

    RÜVEYDA AĞCAABAT

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    KimyaMarmara Üniversitesi

    Kimya Ana Bilim Dalı

    PROF. DR. ÜMİT SALAN

    DR. SELÇUK ALTUN

  2. İzopropil fenoksi türevi alfa-sübstitüe ftalosiyaninlerin sentezi ve karakterizasyonu

    Synthesis and characterization of the alpha-substituted phthalocyanines with isopropyl phenoxy groups

    ENİS ERÇİN GÜNDÜZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    KimyaMarmara Üniversitesi

    Kimya Ana Bilim Dalı

    PROF. DR. ÜMİT SALAN

  3. Mono-ansa siklotrifosfazen bileşiklerinin alkoliz reaksiyonlarının incelenmesi

    Investigation of alcoholysis reactions of mono-ansa cyclotriphosphazene compounds

    CEYLAN MUTLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2014

    KimyaGebze Yüksek Teknoloji Enstitüsü

    Kimya Ana Bilim Dalı

    PROF. SERAP BEŞLİ

  4. İki kiral merkezli siklotrifosfazen bileşiklerinin stereojenik özelliklerinin HPLC ve NMR ile belirlenmesi

    Determination of the stereogenic properties of cyclotriphosphazene derivatives containing two equivalent centres of chirality with HPLC and NMR

    BÜNYEMİN ÇOŞUT

    Yüksek Lisans

    Türkçe

    Türkçe

    2007

    KimyaGebze Yüksek Teknoloji Enstitüsü

    Kimya Ana Bilim Dalı

    Y.DOÇ.DR. SERKAN YEŞİLOT

  5. Fenoksi fosfazen türevi Schiff bazları ve bazı geçiş metal komplekslerinin sentezi ve karakterizasyonu

    Synthesis characterization of phenoxy phosphazenes derivatives Schiff bases and its some transition metal complexes

    KÜBRA NERGİZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    KimyaYıldız Teknik Üniversitesi

    Kimya Ana Bilim Dalı

    PROF. DR. NEBAHAT DEMİRHAN