Elektrikli araçlarda menzil artışına yönelik yapay zekâ tabanlı sürdürülebilir ulaşım modelinin geliştirilmesi, optimizasyonu ve analizi
Development, optimization and analysis of artificial intelligence based sustainable transportation model for range extention in electric vehicles
- Tez No: 942607
- Danışmanlar: DOÇ. DR. TEOMAN KARADAĞ
- Tez Türü: Doktora
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Büyük veri, Elektrikli araçlar, Regresyon, SeaHorse, Optimizasyon, Big-Data, Electric vehicles, Regression, SeaHorse, Optimization
- Yıl: 2025
- Dil: Türkçe
- Üniversite: İnönü Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 236
Özet
Tez çalışmasında, elektrikli araçlarda menzil uzatmak için gerçek zamanlı büyük veriler kullanarak elektrikli aracın kritik parametreleri, yol parametreleri ve coğrafi parametreleri de dahil ederek yeni bir enerji tüketim tahmin modeli geliştirilmiştir. Bu model ile elektrikli araç dönüşümü yapılacak olan rotalarda, elektrikli aracın enerji tüketim tahmini, kullanılacak olan aracın motor tipi ve güç seçimi, rotaya göre batarya kapasitesi seçimi yapılmıştır. Çalışma boyunca büyük veriler kullanılarak enerji tüketim tahmin modelleri elde edilmiştir. Bu modeller oluşturulurken aracın ve rotanın kritik parametreleri arasında yer alan hız, ağırlık, eğim, dış ortam sıcaklığı, elektriksel ve mekaniksel arıza, ivmelenme ile faydalı frenleme gücü kullanılmıştır. Tez çalışması altı adımda ele alınmıştır. İlk adımda literatür taraması yapılmış ve ikinci adımda ise Trambüs'lerin kara kutusunda 1 milyar satır veri toplanmıştır. Üçüncü adımda, BAP doktora tez projesi kapsamında yeni bir kara kutu alınıp araca yerleştirilerek veriler alınmış, eski ve yeni veriler arasında incelemeler yapılmıştır. Dördüncü adımda, Lineer Regresyon yöntemi ile MTECM enerji tüketim tahmin modeli elde edilmiştir. Beşinci adımda GPR kullanılarak GMTECM elde edilmiştir. Son adımda ise SHO-EBECM enerji tüketim tahmin modeli SeaHorse optimizasyon tekniği ile oluşturulmuştur. Modeller, Malatya'da halihazırda otobüs işletmesi yapılan en yoğun rotalara uygulanmış ve işletmenin içten yanmalı araçlar yerine elektrikli araç dönüşümü yapıldığı taktirde rotalar için olası enerji tüketim değerleri hesaplanmıştır. Geliştirilen tüm tahmin modelleri, literatürde yer alan diğer tüketim modelleri ile hata oranı açısından karşılaştırmalı olarak olarak değerlendirilmiş sunulmuştur.
Özet (Çeviri)
In thesis study, a new energy consumption prediction model was developed by including critical parameters of electric vehicles, road parameters and geographical parameters using real-time big data to extend the range of electric vehicles. With this model, the energy consumption prediction of electric vehicles, the engine type and power selection of the vehicle to be used, and the battery capacity selection according to the route were made in the routes where electric vehicle conversion will be made. Energy consumption prediction models were obtained using big data throughout the study. While creating these models, speed, weight, slope, outside temperature, electrical and mechanical failure, acceleration and recuperation, which are among the critical parameters of the vehicle and route, were used. The thesis study was handled in six steps. In first step, a literature review was conducted and in second step, 1 billion lines of data were collected in black box of Trambuses. In third step, a new black box was purchased within the scope of the BAP project and placed in the vehicle, data was collected, and examinations were made between old and new data. In fourth step, the MTECM energy consumption prediction model was obtained with the Linear Regression method. In fifth step, GMTECM was obtained using GPR. In last step, SHO-EBECM energy consumption estimation model was created with the SeaHorse optimization technique. The models were applied to the busiest routes in Malatya and possible energy consumption values for the routes were calculated if the company converted from fossil vehicles to electric vehicles. All developed prediction models are evaluated and presented comparatively with other consumption models in the literature in terms of error rate.
Benzer Tezler
- Elektrikli araçlar için rejeneratif sürücü tasarımı ve farklı sürüş profillerinde test edilmesi
Regenerative drive design for electric vehicles and testing in different driving cycles
RAMAZAN DURSUN
Yüksek Lisans
Türkçe
2024
Elektrik ve Elektronik MühendisliğiPamukkale ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. SELAMİ KESLER
- Elektrikli taşıtlarda FBG algılayıcılar kullanılarak Li-Ion batarya sıcaklığının modellenmesi ve simülasyonu
Modeling and simulation of Li-Ion battery temperature using FBG sensors in electric vehicles
AYŞEGÜL AVCI
Yüksek Lisans
Türkçe
2024
Elektrik ve Elektronik MühendisliğiBursa Uludağ ÜniversitesiHibrid ve Elektrikli Taşıtlar Anabilim Dalı
DR. ABDURRAHMAN GÜNDAY
- Experimental investigation of a hybrid thermal management system for an electric vehicle battery module
Elektrikli araç pil modülü için hibrit ısıl yönetim sisteminin deneysel olarak incelenmesi
TURGAY COŞKUN
Doktora
İngilizce
2022
Makine Mühendisliğiİzmir Yüksek Teknoloji EnstitüsüMakine Mühendisliği Ana Bilim Dalı
PROF. DR. ERDAL ÇETKİN
- Elektrikli araçların akıllı şebekeye entegrasyonu ve şebekeye etkilerinin yapay zekâ yöntemleriyle analizi
Integration of electric vehicles into the smart grid and analysis of their effects on the grid with artificial intelligence methods
KADİR OLCAY
Doktora
Türkçe
2024
Elektrik ve Elektronik MühendisliğiKonya Teknik ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. NURETTİN ÇETİNKAYA
- Improving electrolyte performance of PEO by addition of LLZTO nanofillers in solid state battery applications
Katı hal batarya uygulamalarında LLZTO nanofıller katkısı ile PEO'nun elektrolit performansının geliştirilmesi
SENA SAVAŞ
Yüksek Lisans
İngilizce
2024
Mühendislik Bilimleriİstanbul Teknik ÜniversitesiMetalurji ve Malzeme Mühendisliği Ana Bilim Dalı
PROF. DR. FATMA SENİHA GÜNER
PROF. DR. NİLGÜN YAVUZ