Zamana göre kesirli mertebeden klein-gordon denkleminin sonlu fark yöntemleri ile nümerik çözümleri
Numerical solutions of the time dependent fractional order klein-gordon equation with finite difference method
- Tez No: 954774
- Danışmanlar: PROF. DR. ALAATTİN ESEN, DOÇ. DR. BERAT KARAAĞAÇ
- Tez Türü: Yüksek Lisans
- Konular: Matematik, Mathematics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: Türkçe
- Üniversite: İnönü Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Matematik Ana Bilim Dalı
- Bilim Dalı: Uygulamalı Matematik Bilim Dalı
- Sayfa Sayısı: 59
Özet
Bu tez çalışması beş bölümden oluşmaktadır. Giriş bölümü olarak verilen birinci bölümde kesirli mertebeden analiz kavramı ve Klein-Gordon denklemi hakkında genel bilgiler ile birlikte literatürdeki bazı çalışmalardan bahsedildi. Tezin ikinci bölümünde çalışmanın inşası ve ilerleyişi açısından gerek duyulan temel tanım ve kavramlara kısaca yer verildi. Üçüncü ve dördüncü bölümler tezin esasını oluşturan zamana göre kesirli mertebeden Klein-Gordon denklemine ayrılmıştır. Üçüncü bölümde model problem tanıtılıp açık, kapalı ve Crank-Nicolson sonlu fark şemaları oluşturulmuş ve kararlılık analizi de bu bölümde sunulmuştur. Dördüncü bölüm sayısal yöntemler ile elde edilen çözümlere ayrılmıştır. Bu bölümde sunulan yöntemlerle elde edilen çözümler literatürde var olan çözümlerle karşılaştırılmaları çizelgeler ve grafiklerde verilmiştir. Son bölüm olan beşinci bölümde ise sonuç ve öneriler hakkındadır.
Özet (Çeviri)
This thesis consists of five chapters. The first chapter, which serves as an introduction, provides general information about the concept of fractional order analysis and the Klein-Gordon equation, along with references to some studies in the literature. The second chapter briefly covers the basic definitions and concepts required for the construction and progress of the study. The third and fourth chapters are devoted to the time-dependent fractional-order Klein-Gordon equation, which forms the core of the thesis. In the third chapter, the model problem is introduced, and explicit, implicit, and Crank-Nicolson finite difference schemes are developed, along with a stability analysis. The fourth chapter is devoted to solutions obtained using numerical methods. The solutions obtained using the methods presented in this chapter are compared with existing solutions in the literature in tables and graphs. The final chapter, the fifth chapter, deals with conclusions and recommendations.
Benzer Tezler
- Zamana göre kesirli mertebeden Schrödinger denkleminin Chebyshev kollokasyon yöntemi ile nümerik çözümleri
Numerical solutions of time fractional order Schrodinger equation using Chebyshev collocation method
GÜLLÜ ESRA KÖSE
Doktora
Türkçe
2020
Matematikİnönü ÜniversitesiMatematik Ana Bilim Dalı
PROF. DR. ALAATTİN ESEN
DR. ÖMER ORUÇ
- Kesirli mertebeden kısmi diferansiyel denklemlerin B-spline sonlu eleman yöntemleri ile çözümleri
Solutions of fractional order partial differential equations by B-spline finite element methods
ORKUN TAŞBOZAN
- Bazı kesirli mertebeden gecikmeli diferansiyel denklemlerin çözümlerinin kararlılığı
Stability of solution of some fractional order delayed differential equations
ABDULHAMİT ÖZDEMİR
- Kesirli kısmi türevli kan akış modellerinin sayısal çözümleri ve kararlılık analizi
Numerical solutions and stability for fractional partical blood flow models
KÜBRA HEREDAĞ
- Antibiyotik-bağışıklık sistemi dinamiklerinin kesirsel mertebeden matematiksel modeli ve kararlılık analizi
Mathematical model from fractional grade and stability analysis of the dynamics of antibiotic-immune system
NURCAN IŞILDAK
Yüksek Lisans
Türkçe
2019
MatematikErciyes ÜniversitesiMatematik Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BAHATDİN DAŞBAŞI