G-convergences and g-sequential spaces for g-methods
G-methodlar için g-yakınsaklık ve g-dizisel uzaylar
- Tez No: 963552
- Danışmanlar: PROF. DR. OSMAN MUCUK
- Tez Türü: Doktora
- Konular: Matematik, Mathematics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: İngilizce
- Üniversite: Erciyes Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Matematik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 84
Özet
Bu tezde, k\“{u}meler ve uzaylar \”{u}zerinde tan{\i}ml{\i} genelle\c{s}tirilmi\c{s} yak{\i}nsakl{\i}k yap{\i}lar{\i} olan $G$-methodlar incelenmi\c{s}tir. {\.I}lk olarak, dizilerin yak{\i}nsakl{\i}\u{g}{\i}n{\i}n genellemesi olan $G$-yak{\i}nsakl{\i}k ve $G$-dizisel yak{\i}nsakl{\i}k kavramlar{\i} tan{\i}mlanm{\i}\c{s}t{\i}r. \c{C}al{\i}\c{s}man{\i}n amac{\i}, $G$-yak{\i}nsakl{\i}k ile $G$-dizisel yak{\i}nsakl{\i}k aras{\i}ndaki farklar{\i} ortaya koymakt{\i}r. $G$-yak{\i}nsakl{\i}k yaln{\i}zca diziler \“{u}zerinde tan{\i}ml{\i} fonksiyonel bir metoda dayan{\i}rken, $G$-dizisel yak{\i}nsakl{\i}k $G$-a\c{c}{\i}k kom\c{s}uluk yap{\i}lar{\i} ile tan{\i}mlanarak daha topolojik anlaml{\i} bir yakla\c{s}{\i}m sunar. Bu durum \”{o}rneklerle a\c{c}{\i}k\c{c}a g\“{o}sterilmi\c{s}tir. Ayr{\i}ca, $G$-dizisel a\c{c}{\i}k k\”{u}melerin bir topoloji olu\c{s}turdu\u{g}u ve bunun da $G$-dizisel uzay olarak isimlendirildi\u{g}i ispatlanm{\i}\c{s}t{\i}r. Ancak, $G$-a\c{c}{\i}k k\“{u}meler ailesinin b\”{o}yle bir topoloji olu\c{s}turmad{\i}\u{g}{\i} g\“{o}r\”{u}lm\“{u}\c{s}t\”{u}r. Sonras{\i}nda, bu fikirler geni\c{s}letilerek $G$-yak{\i}nsakl{\i}k ve $G$-dizisel uzaylar ba\u{g}lam{\i}nda $G$-submethod kavramlar{\i} tan{\i}mlanm{\i}\c{s} ve ara\c{s}t{\i}r{\i}lm{\i}\c{s}t{\i}r. Tezin devam{\i}nda, $G$-method ba\u{g}lam{\i}nda s\“{u}reklilik kavram{\i} incelenmi\c{s}tir. Bu kapsamda, $G$-s\”{u}reklilik ve $G$-dizisel s\“{u}reklilik tan{\i}mlanm{\i}\c{s}, ard{\i}ndan farkl{\i} $G$ ve $H$ methodlar{\i} aras{\i}nda tan{\i}mlanan $(G,H)$-s\”{u}reklilik ve $(G,H)$-dizisel s\“{u}reklilik kavramlar{\i}na ge\c{c}ilmi\c{s}tir. $G$-s\”{u}reklilik ile $G$-dizisel s\“{u}reklilik aras{\i}ndaki temel farklar ortaya konulmu\c{s} ve bu farklar \c{c}e\c{s}itli kar\c{s}{\i} \”{o}rneklerle desteklenmi\c{s}tir. Tezin son b\“{o}l\”{u}m\“{u}nde, $G$-yak{\i}nsak ayr{\i}\c{s}{\i}m aksiyomlar{\i} ($G$-$\mathcal{T}_i$, $i = 0,1,2,3,4$) tan{\i}t{\i}lm{\i}\c{s} ve incelenmi\c{s}tir. Bu aksiyomlar, $G$-a\c{c}{\i}k ve $G$-kapal{\i} altk\”{u}meler kullan{\i}larak karakterize edilmi\c{s} ve elde edilen sonu\c{c}lar a\c{c}{\i}klay{\i}c{\i} \"{o}rneklerle desteklenmi\c{s}tir.
Özet (Çeviri)
In this thesis, we study generalized convergence structures known as $G$-methods on sets and spaces. First, we investigate two types of convergence, $G$-convergence and $G$-sequential convergence. The study aims to find the differentiation between G-convergence and G-sequential convergence. While G-convergence relies purely on the functional method applied to sequences, G-sequential convergence incorporates $G$-open neighborhood structures and offers a more topologically meaningful approach. We demonstrate thorough counterexamples that these notions do not generally coincide. We prove that the family of G-sequentially open sets forms a topology known as $G$-sequential space, unlike the family of G-open sets. Subsequently, we extend these ideas to define and explore $G$-submethods in $G$-convergence and in $G$-sequential spaces. We then analyze continuity in the context of $G$-methods, introducing notions of $G$-continuity, $G$-sequential continuity. Then study advances to the concept of $(G,H)$-continuity and $(G,H)$-sequential continuity, introducing mappings between distinct $G$ and $H$ methods. Important differences between $G$-continuity and $G$-sequential continuity are discussed, and different counterexamples support the idea. The last chapter of the thesis introduces and studies $G$-convergently separation axioms ($G$-$T_i$, $i=0,1,2,3,4$). We characterize these axioms using $G$-open and $G$-closed subsets, and supported our results through illustrative counterexamples. While rooted in pure mathematics, this research is also motivated by practical considerations. In the future, I would like to connect these concepts with computation and data-driven theory, especially in areas such as decision-making, data analysis, and algorithm design. This reflects the general idea of transforming theoretical foundations into practical tools for addressing real-world problems.
Benzer Tezler
- Çarpım uzaylarda dizisel süreklilik,kompaktlık ve irtibatlılık
Sequentially continuity, compactness and connectedness inproduct spaces
MİNA BETÜL TEKE
- Multi-agent planning with automated curriculum learning
Otomatik müfredat öğrenmesi ile çoklu ajan planlaması
ONUR AKGÜN
Doktora
İngilizce
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. NAZIM KEMAL ÜRE
- Distributed algorithms based on fictitious play for near optimal sequential decision making
Başlık çevirisi yok
ESRA ŞİŞİKOĞLU
Doktora
İngilizce
2009
Endüstri ve Endüstri MühendisliğiUniversity of MichiganDOÇ. DR. MARINA A. EPELMAN
PROF. ROBERT L. SMITH
- Dizisel anlamda süreklilik, kompaktlık ve irtibatlılık
Sequentially continuity, compactness and connectedness
FİTNAT GENÇOĞLU