Veri arttırma tekniğinin endüstriyel bir problemde incelenmesi
Investigation of the data augmentation technique in an industrial problem
- Tez No: 965187
- Danışmanlar: DR. ÖĞR. ÜYESİ GARİP ERDOĞAN, DR. ÖĞR. ÜYESİ -
- Tez Türü: Yüksek Lisans
- Konular: Mühendislik Bilimleri, Engineering Sciences
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: Türkçe
- Üniversite: Sakarya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İmalat Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 123
Özet
Kültür taşı, doğal taş dokusunu ve estetik görünümünü ekonomik, hafif ve kolay uygulanabilir bir malzeme olarak sunarken cephe kaplamalarından iç mekân dekorasyonuna, peyzaj düzenlemelerinden tarihi yapı restorasyonlarına kadar geniş bir yelpazede mimari ve tasarım projelerine estetik ve işlevsel katkılar sağlar. Otel lobileri, restoran şömine çevreleri gibi sosyal alanlarda sıcak ve doğal bir atmosfer yaratırken dış cephe giydirmelerinde dayanıklılığıyla yapı bütünlüğünü korur, bahçelerde patika kenarlarında ve çardak ayaklarında dekoratif vurgularla çevresel uyum sunar. Bu üretim sürecinde kırılma probleminin önceden tahmin edilmesi ve kontrol altına alınması, kalite yönetimi ve sürdürülebilirlik hedeflerine ulaşmada kritik öneme sahiptir. Regresyon analizi yapılarak çeşitli bağımsız değişkenlerin çıktı üzerindeki kuvvetleri ölçülmüş, buna istinaden anlamsız bulunan veri setleri sentetik veri arttırma teknikleri ile geliştirlerek sistem üzerindeki etkileri yeniden test edilmiştir. Bu amaçla, sentetik veri eklenen veri setleri Lineer Regresyon ve Random Forest gibi modeller etkin kullanılarak model performansını ölçmek üzere R², MSE ve MAE gibi istatistiksel ölçütler uygulanmıştır.Model kararlılığını ve genelleme yeteneğini güçlendirmek ve sentetik veri eklemek için Gauss gürültüsü ekleme ve Bootstrap örnekleme yöntemleri gibi veri çeşitlendirme teknikleri de benimsenmiştir. Gauss gürültüsü, model eğitim sürecine rastgele varyasyonlar katarak tahmin sapmalarını dengelerken, Bootstrap yöntemi farklı örnekleme kombinasyonları yaratarak modelin uç değerlerle başa çıkma yetisini artırır. Model geliştirme ve doğrulama aşamalarında, her iki veri zenginleştirme tekniğinin, R² değerlerinde ve hata metriği skorlarında anlamlı iyileşmeler sağladığı deneysel bulgularla ortaya konmuştur. Elde edilen sonuçlar, sentetik veri üretimi yaklaşımlarının kullanılmasının, süreç kontrolü ve kalite güvencesi açısından bütüncül bir çözüm sunduğunu göstermektedir. Bu bütünleşik yöntem, operatörlerin karar verme süreçlerini destekleyerek kırılma olasılığını düşürecek proses ayarlamalarının zamanında yapılmasına imkân tanır; aynı zamanda üretim hattında yeniden işleme ihtiyacını azaltarak hem iş gücü optimizasyonu hem de atık yönetimi süreçlerinde sürdürülebilir iyileştirmeler sunar. Dolayısıyla, kültür taşı üretimindeki kırılma tahmin modellerinin, mimari projelerde hem estetik hem de yapısal performansın güvence altına alınmasında anahtar rol oynayan bir teknoloji entegrasyonu olarak değerlendirilebilir. Bu yaklaşım, gelecekte gerçek zamanlı izleme sistemleri ve otonom kontrol döngüleriyle desteklenen endüstriyel otomasyona zemin hazırlayarak hem maliyet etkinliği hem de çevresel sorumluluğu bir arada gerçekleştirmeyi hedefleyen akıllı üretim felsefesine hizmet edecektir.
Özet (Çeviri)
Cultured stone is a versatile building material that offers an economical and practical alternative to natural stone by imitating its aesthetic properties. While processing and transporting natural stone is both difficult and costly, cultured stone eliminates these challenges. It is widely used in both interior and exterior applications, including facade cladding, interior decoration, landscape design, and the restoration of historical buildings. The aim of this study is to examine the cultured stone production process and determine the optimal production parameters. A major quality issue during production is the cracking of the stones, which leads to material waste and the need for reprocessing. This negatively affects production efficiency. Therefore, identifying and preventing the causes of these cracks is crucial for improving the overall manufacturing process. In the initial phase of the research, the main process parameters affecting product quality were identified. For this purpose, the Plackett-Burman design, a method under the Design of Experiments (DOE) framework, was used. This approach allows for the rapid analysis of variable effects using a minimal number of experiments. Six different process parameters were tested at two levels, and for each combination, the percentage of cracked stones was measured and evaluated. Experimental data were analyzed using Linear Regression (LR) and Random Forest (RF) algorithms. Model performance was assessed using statistical metrics such as the coefficient of determination (R²), Mean Squared Error (MSE), and Mean Absolute Error (MAE). While both models provided satisfactory results under certain conditions, they struggled with outliers and the limited diversity of the dataset. This showed that their generalization capability was limited. To address the lack of diversity and imbalance in the data, data augmentation techniques were applied. Gaussian noise was added to the process parameters to introduce small, random variations, enabling the model to learn from a wider range of scenarios. Additionally, Bootstrap sampling was used to generate synthetic samples by repeatedly selecting subsets from the original data. This significantly increased the volume of the dataset. The results demonstrated that these data augmentation methods considerably improved model performance. Gaussian noise made the model more sensitive to slight variations in the data, while the Bootstrap technique helped reduce overfitting and increased robustness against extreme values. Furthermore, the physical and mechanical properties of cultured stones were evaluated using standard test methods, including compressive strength, splitting tensile strength, density, water absorption rate, and freeze-thaw resistance. The experimental results revealed how different production parameters affect the durability and quality of the final product. This comprehensive approach allowed producers to better understand and improve their processes using both experimental and data-driven methods. Analyzing data collected from the production line helped build predictive models to detect potential issues in advance. This proactive approach reduced production losses and offered significant advantages in terms of quality assurance, customer satisfaction, and cost control. In conclusion, this study demonstrated that machine learning and data augmentation techniques can be effective tools for process control and quality assurance in cultured stone production. However, one limitation is that augmented data still remains close to the original training data, which may restrict model generalization. In the future, integrating these methods with real-time monitoring systems and autonomous control mechanisms will contribute to the development of smart manufacturing systems in line with Industry 4.0 goals. These data-driven and automated methods not only improve cost efficiency but also support environmentally responsible industrial practices. Enhancing production quality and reducing reprocessing rates in cultured stone manufacturing can be achieved by carefully monitoring each stage of the process. Specifically, the demolding and drying phases are critical, as temperature, humidity, and duration must be precisely controlled. Otherwise, the internal structure of the concrete may not cure properly, resulting in decreased strength. Dimensional accuracy and surface quality are also evaluated through visual inspections at the end of the production line. Defects such as bubbles, cracks, and contamination are detected, and defective products are removed. This is essential for customer satisfaction, especially in exterior cladding applications where visual consistency is key. Therefore, keeping the molds clean is critical. Contaminated or deformed molds can negatively affect both the appearance and strength of the products. The integration of data science and artificial intelligence into industrial processes has gained increasing importance in recent years. The machine learning models and data augmentation methods used in this study can be applied not only to cultured stone production but also to various manufacturing fields. These technologies are also useful in factory automation, predictive maintenance, and energy efficiency monitoring. Especially for small-scale manufacturers, such technologies offer opportunities to enhance productivity and accelerate growth. The contribution of data augmentation to production quality is not limited to improving the accuracy of statistical models. It also helps systems with limited data to learn faster, handle outliers, and reduce the effects of data imbalance. Since it is not always possible to observe all scenarios in real-life production environments, synthetic data generation allows for simulating potential conditions in advance. This enables production systems to be tested and prepared for unexpected situations. The application section of this study also provided suggestions on how augmented models can be implemented in the production line. It was proposed that data collected from integrated sensors can be transmitted to the model in real time, allowing operators to be alerted or enabling the system to adjust itself automatically. This would help minimize human error, maintain quality standards, and maximize production efficiency. Finally, the methods discussed in this study support the vision of sustainable manufacturing. By predicting breakages in advance, reprocessing rates can be reduced, thus minimizing material waste and energy consumption. This results in reduced carbon emissions, lower labor costs, and significant environmental and economic benefits. These improvements offer not only short-term operational gains but also long-term advantages for corporate sustainability and environmental responsibility. This holistic approach to cultured stone production combines data science, materials science, and industrial engineering, offering an interdisciplinary solution model. Especially in developing industrial regions, such innovative approaches are essential for local manufacturers to gain competitive advantages. As similar studies are applied to other sectors, digitalization and automation in production processes will accelerate, supporting Turkey's goals for industrial transformation.
Benzer Tezler
- Vaka çalışması: Endüktif transfer öğrenme ile kalan faydalı ömür tahminlemesi
Case study: Remaining useful life estimation with inductive transfer learning
MEHMET MUSA ÖZCAN
Yüksek Lisans
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. UĞURHAN KUTBAY
- Enhancing netwok lifetime of underwater wireless sensor networks with smart energy harvesting
Sualtı duyarga ağlarında akıllı enerji hasadı ile yaşam ömrünün uzatılması
ÇİĞDEM ERİŞ BALOĞLU
Doktora
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBahçeşehir ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. PINAR BOLUK
- The optimal value determination for energy gain of MME to ME coding in wireless sensor networks
Kablosuz algılayıcı ağlarda MME'nin ME kodlamaya göre enerji kazancının optimal değerinin belirlenmesi
HISHAM IDKEIDEK
Yüksek Lisans
İngilizce
2023
Elektrik ve Elektronik MühendisliğiSakarya ÜniversitesiElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ NÜKHET SAZAK
- Otomotiv sektöründe parça kontrolü için yapay zekâ destekli yazılım geliştirilmesi
Development of ai-supported software for part inspection in the automotive industry
ONUR ARDIÇ
Doktora
Türkçe
2025
Elektrik ve Elektronik MühendisliğiSakarya ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. GÖKÇEN ÇETİNEL
- Bir üretim atölyesinde darboğaz problemlerinin benzetimle analizi
Analysis by simulation of bottleneck problems in a job shop production system
SERPİL ÜSTÜN
Yüksek Lisans
Türkçe
2005
Makine MühendisliğiKaradeniz Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
Y.DOÇ.DR. EMRULLAH DEMİRCİ