Parça ailesi oluşturmada endüktif-kaba kümeleme yaklaşımı
Inductive-rough sets appoach in part family formation
- Tez No: 153081
- Danışmanlar: PROF.DR. ORHAN TORKUL
- Tez Türü: Doktora
- Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
- Anahtar Kelimeler: Hücresel İmalat, Grup Teknoloji, Endüktif Öğrenme, Kaba Kümeleme, Veri Madenciliği Geleneksel üretim sistemleri, rekabetin çok fazla olmadığı
- Yıl: 2004
- Dil: Türkçe
- Üniversite: Sakarya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 250
Özet
ÖZET
Özet (Çeviri)
INDUCTIVE-ROUGH SETS APPROACH IN PART FAMILY FORMATION SUMMARY Key Words : Cellular Manufacturing, Group Technology, Inductive Learning, Rough Sets Theory, Data Mining Traditional manufacturing systems are techniques that are developed for manufacturing environments that aren't surrounded by high competition (are under low competitive conditions), have low variety of products and long product life cycles. These systems have problems like long lead time, excessive work in process, complicated production planning and control and changing market demands. In order to solve these problems, many modern manufacturing systems which including new methods, techniques and manufacturing philosophies as MRP, OPT, GT, CM, JIT etc. had been improved. Cellular manufacturing is a modern production system known as application of GT in manufacturing. There have been many clustering techniques to form part families and machine cells in GT literature. Most of these techniques are inadequate to achieve expected results in industrial problems because that they had not been tested with real manufacturing data. For this reason, a flexible model, that determines the formation of the part families easily, based on the AI technologies (Inductive Learning and Rough Set Theory) and Data Mining, have been developed. This model, has applied on real manufacturing environment in four scenarios with different manufacturing characteristics. Later, a simulation model has been designed in order to make performance analysis of the each part families that belongs to these scenarios. The performance measures of the scenarios have been computed via this model and the differences of the scenarios have been tested by t-test in a determined significance level. The results of the comparison have been demonstrated graphically, and the effects of the manufacturing characteristics on forming part families have been analyzed. As a result it has been observed that operation time characteristic gives the most appropriate solutions in all similarity clusters and loading manners for all three performance measures. xx
Benzer Tezler
- A Part family formation algorithm in GT environment using a multi-objective cluster analysis
GT ortamında çok amaçlı sınıflandırma analizi ile bir parça oluşturma algoritması
HAKAN OKAN BALKÖSE
Yüksek Lisans
İngilizce
1993
Endüstri ve Endüstri Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiEndodonti Ana Bilim Dalı
YRD. DOÇ. DR. SELİM AKTÜRK
- Dynamic manufacturing cell formation through market oriented programming
Piyasa odaklı programlama ile dinamik üretim hücrelerinin oluşturulması
LATİFE GÖRKEMLİ
Doktora
İngilizce
2014
Endüstri ve Endüstri MühendisliğiGaziantep ÜniversitesiEndüstri Mühendisliği Bölümü
PROF. DR. ADİL BAYKASOĞLU
- Grup teknolojisinde parça ailesi ve imalat hücresi oluşturma: Bir örnek inceleme
Part family and manufacturing cell formation in group technology: An example study
ERHAN BABALI
- Sinemada oyunculuk: Kako Si? filmi ile değerlendirilmesi
Acting in cinema: Evaluation with Kako Si?
ÖZLEM AKOVALIGİL
Yüksek Lisans
Türkçe
2010
Radyo-TelevizyonMarmara ÜniversitesiSinema Televizyon Ana Sanat Dalı
PROF. DR. SABRİ ÖZAYDIN
- Yalın montaj sistemlerinin tasarlanması ve uygulanması
Designing and implementation of lean assembly systems
EZGİ BORA
Yüksek Lisans
Türkçe
2017
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET BÜLENT DURMUŞOĞLU