Doğal gazlı kat kaloriferi dizaynı
The Design of natural gas domestic heater
- Tez No: 21713
- Danışmanlar: PROF. DR. OSMAN F. GENCELİ
- Tez Türü: Yüksek Lisans
- Konular: Makine Mühendisliği, Mechanical Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1992
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 85
Özet
ÖZET Katkaloriferi bireysel ısıtmada en yaygın kullanılan ısıtma araçlarından biridir. Bunda gerek ekonomikliğin ve gerekse kullanıcının özgürlüğünün katkısı büyüktür. Bu tez çalışması ile doğalgazlı katkaloriferi dizaynına çalışmış, teorik hesaplamaların yanında bir deney düzeneğinde deney sonuçları da alınarak mukayese edilmiştir.
Özet (Çeviri)
SUMMARY THE DESIGN OF NATURAL GAS DOMESTIC HEATER INTRODUCTION. The designed domestic heater is planned for a heat capacity of 19.5 kW an u Here, i = Enthalpy of chimney smoke | kJ/Nm3 | i = Enthalpy of air | kJ/Nm3 | T, = Temperature of chimney smoke T - Temperature of environment air Fox Tb = 216°C ib= 280KJ/Nm3 from table EK 2 For T = 20°C io= 4.18 KJ/Nm3 from EK 5 Hu = 39311 kJ/Nm3 V = 14,32 Nm3/Nm3 : o Vlll7 _ 14,32 (280-4,18) Zb 39311 = 0,1005 zb= 10 % 8-6 Loss in Uncontinuous activity (Zo) 3. The domectic heater is assumed active continuously S. Z = 0 o' a Thermal efficiency ('h*) i* = i- £ z = 1-(Z + y = l-(0+0+0+0, 063+0, 10+0) 1-(Z +Z-.+Z +Z +Z, + Z ) v y d e c b a'“7 = 0,837 9- Determining Of Fuel Amount (B) B= Q'”7 (1.10) H u Q= 70.000 kJ/h ^ = 0,837 Hu= 39311 kJ/Nm3 B= 70.000. 0,837 39311 B= 1,49 Nm3/h 10- Total Air And Smoke Amount 10-1, Total Air Amount (Vfa) vh = Vh.B (1.11) IX= 13,18. 1,49 = 19,64 Nm3/h 10-2- Total Smoke Amount (V ) g V = V.B (1.12) g ? g = 14,32.1,49 = 21,34 Nm3/h 1-3 DETERMINING OF CONVECTION SURFACES First of all the temperatures of boiler are assumed. The assumed temperatures are shown at Figure 1. The formulas are given below about determining of con vection surfaces. K.A.ATm= Vg. (igo-igl) (1.13) AT - AT-, In C±T± K= hk + hR (1.15) Tm Tm ir°>75 - -0,0088 ( ~^-)2\. - - 100 100 d0,25 hfc =0,95 |4,19.0,3. ^ -0,0088 ( -S-) 2 |. -^oc(l.lS) = qC02 +*H20 (1#17) Here, K : Total heat-transfer coefficient A : Heat-transfer surface &T : Average temperature V : Total smoke amount g i : Enthalpy at: To igl: Enthalpy at ^ xFigure: 1.Determined Temperatures Of Boiler XIh, = heat-transfer coefficient by convection h = heat-transfer coefficient by radiation V : Velocity of smoke d : Diameter of canal inwhich smoke passes qCQ2: Transferee} heat per m2 by C02 qH p.: Transfered heat per m2 by H20 Under these formulas, Aol = °>882 m2 A12= 0,575 m2 A23= 0,688 m2 1-4. Calculation Of Load Losses (AP) General formula of calculation of loqd loss in boiler is, Ap=^Px+ APq + APk +Apb+4Py (1.18) Here, A : Total load loss Ap : Load loss at grid Apo: Load loss at fire place Ap,,: Load loss at convection surfaces ^p,: Load loss at chimney Ap : Load loss for ascending( + ) or descending(-)smoke Apl = ° for natural gased system^ A^p =yip gH Fo= Density of smoke at temperature of fire place (T0) g is taken as (9,81 m/ sec2) HQ = High.t of the heat transferred surface /**=/* - ~, j& is taken 1,3 kg/m3 (1.19) m Apk = Aps+ Apc (1.20) APS = R-! (1.21) R : Specific friction loss R is found from EK- ^ p : Load loss in. friction *s xix^Pc : Load loss of discharge APC : T./>' - (1-22) ~f^ = Rate of surface areas. (1.23) (1.24) h : Hight of heat transferred surface T : Average temperature of air T : Average temperature of smoke Under these formulas, Ap=APl+Ap0+Apk+4pB+ A py = 0+2,188+4,9+0,0378-2,3494 = 4,78 Pa 1-5. Chimney Calculation /\ p is calculated 3&^,1S pa- Also 5 Pa for wind, 5 Pa for fireplace and extra 15% of up is taken for chimney calcu lation. So; P = 1,15 Ap + 5 + 5 = 1,15. 4,78+10 = 15,5 Pa Now, we must decide that natural or forced circulation is used for this system. h- £* (1.25) 3455 _ 3535 273+th 273+tb h: Required hight of chimney t, : Air temperature t. : Chimney temperature xmh is found as 3,39m This length is suitable for natural circulation. PART II. BURNING AT ATMOSPHERIC BURNER As shown in figure 2. primary air is entered into natural gas when natural gas is being sprayed from nozzle. Then the secondary air is taken at fire place. Because of the burner mades of stainless steel, corrosion or thermal and mechanical tension do. not occur. Primary Air JSo_zzi£_ Natural gas ft \ Secondary Air Mprophane (3'1} qLPG = °'7' 112448 + 0,3.86515 qLPG = 104668 kJ/Nm3 If 2,5m 3air is mixed to 1.5 m3 LPG, 2,5.0 + 1,5.104668,,,. qsystem 4 ^.^>> qo,ro,om = 39251 kJ/Nm3 found. ^system 3.2. Result Of Experiment The thermal efficiency is rate of taken heat to given heat. Given heat. - o\ q =V.q s g ^system = 1,77.39251 = 69521 kJ/h Taken Heat Qt= m.C. £T (3.4) Here, m : Flow rate of the water (kg/min) C : Specific heat |C is taken 1 Kcal/kg°C) AT : Temperature difference (°C) The calculation is repeated with 5 min-. intervals for one hour at end of one hour the taken heat is found 13898 Kcal/h, (= 58177 kJ/h) So, nn = - taken (3.5) ^given 58177 / 69521 nj = 0,837 ->-? is found 83,7 % XV
Benzer Tezler
- Natural gas infrastructure expansions in Turkey: Economic feasibility and a cost comparison with PV investments
Türkiyede doğal gaz altyapı genişlemeleri: Ekonomik fizibilite ve PV yatırımları ile maliyet karşılaştırması
BİLGE MANSIZ
Yüksek Lisans
İngilizce
2021
EnerjiOrta Doğu Teknik ÜniversitesiYer Sistem Bilimi Ana Bilim Dalı
PROF. DR. BÜLENT GÜLTEKİN AKINOĞLU
DR. BORA KAT
- Landscape research on towards sustainable energy landscapes
Sürdürülebilir enerjillere yönelik peyzaj araştırması
SOLMAZ MOHAMMADALIREZAEI
Yüksek Lisans
İngilizce
2019
Peyzaj Mimarlığıİstanbul Teknik ÜniversitesiPeyzaj Mimarlığı Ana Bilim Dalı
DOÇ. DR. MELTEM ERDEM KAYA
- Theoretical modeling of the energy efficiency of a shopping mall
Bir alışveriş merkezinin enerji verimliliğinin teorik modellenmesi
HAMZA ABUALESS
Yüksek Lisans
İngilizce
2023
EnerjiAtatürk ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. KADİR BİLEN
- Investigation of the catalytic performance of tin nanowires produced by aluminum anodic oxide template method for electrochemical CO2 reduction
Alüminyum anodik oksit şablon yöntemiyle üretilen kalay nanotellerin elektrokimyasal CO2 redüksiyonuna yönelik katalitik performansinin i̇ncelenmesi
DİLAN ER GÖNÜL
Doktora
İngilizce
2023
Metalurji Mühendisliğiİstanbul Teknik ÜniversitesiMalzeme Bilimi ve Mühendisliği Ana Bilim Dalı
PROF. DR. MUSTAFA KAMİL ÜRGEN
- Eymir Gölü'nde reaktif azot döngüsünün incelenmesi
Determination of the reactive nitrogen cycle at Lake Eymir
EZGİ ÖĞÜN
Yüksek Lisans
Türkçe
2012
Çevre MühendisliğiHacettepe ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
DOÇ. DR. SELİM L. SANİN