Adaptive neural network applications on missile controller design
Uyarlanabilir yapay sinir ağları uygulamalarıyla füze kontrolcüsü tasarımı
- Tez No: 259214
- Danışmanlar: YRD. DOÇ. DR. İLKAY YAVRUCUK
- Tez Türü: Yüksek Lisans
- Konular: Savunma ve Savunma Teknolojileri, Uçak Mühendisliği, Defense and Defense Technologies, Aircraft Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2009
- Dil: İngilizce
- Üniversite: Orta Doğu Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Havacılık ve Uzay Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 141
Özet
Bu tezde bir yüksek ses altı seyir füzesi için uyarlanabilir yapay sinir ağı kontrolcüleri tasarlanmıştır. Bu çalışmada uyarlanabilir yapay sinir ağları yöntemi ile iki adet otopilot tasarımı içerilmiştir, yani düşey kanal için irtifa tutma otopilotu tasarlanmış, yatay kanal kontrolü için istikamet otopilotu tasarlanmıştır. Aerodinamik katsayılar füze geometrisi kullanılarak elde edilmiş, 5 serbestlik dereceli benzetim modeli elde edilmiş, tek bir trim koşulu için doğrusallaştırılmıştır. Kontrolcü içinde bir tersleme modeli kullanılmıştır. Uyarlanabilir yapay sinir ağı kontrolcüleri, yani Sigma-Pi yapay sinir ağı, tek gizli katmanlı yapay sinir ağı, arka planda öğrenme uygulanmış tek gizli katmanlı yapay sinir ağı, modelleme hatasını gidermek için yerleştirilmiş ve füzenin düşey ve yatay kanalları için uygulanmıştır. Bu yaklaşım tek bir uçuş koşulunda tersleme kontrolcüsü tasarımı ile çevrim içi öğrenen yapay sinir ağını birleştirip yaklaşık terslemenin sebep olduğu hataları hesaba katarak otopilot tasarım sürecini basitleştirmektedir.Uygulanan kontrol algoritmalarının etkinliğini göstermek amacıyla düşey ve yatay kanallar için benzetimler yapılmıştır. Uygulanan yapay sinir ağı kontrolcülerinin avantajları ve eksikleri gösterilmektedir.
Özet (Çeviri)
In this thesis, adaptive neural network controllers are designed for a high subsonic cruise missile. Two autopilot designs are included in the study using adaptive neural networks, namely an altitude hold autopilot designed for the longitudinal channel and a directional autopilot designed for heading control. Aerodynamic coefficients are obtained using missile geometry; a 5-Degree of Freedom (5-DOF) simulation model is obtained, and linearized at a single trim condition. An inverted model is used in the controller. Adaptive Neural Network (ANN) controllers namely, model inversion controllers with Sigma-Pi Neural Network, Single Hidden Layer Neural Network and Background Learning implemented Single Hidden Layer Neural Network, are deployed to cancel the modeling error and are applied for the longitudinal and directional channels of the missile. This approach simplifies the autopilot designing process by combining a controller with model inversion designed for a single flight condition with an on-line learning neural network to account for errors that are caused due to the approximate inversion.Simulations are performed both in the longitudinal and directional channels in order to demonstrate the effectiveness of the implemented control algorithms. The advantages and drawbacks of the implemented neural network based controllers are indicated.
Benzer Tezler
- Adaptive control of guided missiles
Güdümlü füzelerin adaptif kontrolü
KADRİYE TİRYAKİ KUTLUAY
Doktora
İngilizce
2010
Havacılık MühendisliğiOrta Doğu Teknik ÜniversitesiHavacılık ve Uzay Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. İLKAY YAVRUCUK
- Kompakt mikroşerit antenlerin rezonans frekansının yapay sinir ağları ve bulanık mantık sistemine dayalı uyarlanır ağ kullanarak hesaplanması
Computing the resonant frequency of compact microstrip antennas by using artificial neural network and adaptive neuro-fuzzy inference system
AHMET KAYABAŞI
Doktora
Türkçe
2015
Elektrik ve Elektronik MühendisliğiMersin ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. ALİ AKDAĞLI
- Talep tahmininde sinirsel ağ tabanlı bulanık mantık yöntemi (Anfis) kullanımı ve yalın yapay sinir ağı metodu ile karşılaştırmalı bir uygulama
Using adaptive neural-fuzzy inference systems for demand forecasting and application with comparison artificial neural network method
ONUR DOĞAN
- Adaptive controller applications for rotary wing aircraft models of varying simulation fidelity
Farklı fidelitedeki döner kanatlı hava aracı modellerine yönelik adaptif kontrol uygulamaları
ONUR TARIMCI
Yüksek Lisans
İngilizce
2009
Havacılık MühendisliğiOrta Doğu Teknik ÜniversitesiHavacılık ve Uzay Mühendisliği Ana Bilim Dalı
DR. İLKAY YAVRUCUK
- Wavelet frames and redundant wavelet transforms for fault detection
Dalgacık çerçeveleri ve artıklı dalgacık dönüşümleri ile arıza tespiti
TAYFUN ŞENGÜLER
Doktora
İngilizce
2017
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektrik Mühendisliği Ana Bilim Dalı
PROF. DR. ŞAHİN SERHAT ŞEKER