Geri Dön

Elektrolitik çözeltilerde radyo frekans etkileşimler

Radio-frequency interactions in electrolytic solutions

  1. Tez No: 39255
  2. Yazar: YILMAZ GÜNEY
  3. Danışmanlar: DOÇ.DR. MUSTAFA ÇETİN
  4. Tez Türü: Doktora
  5. Konular: Fizik ve Fizik Mühendisliği, Physics and Physics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1993
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 185

Özet

ÖZET Elektrolitik çözeltilerin öziletkenlik , eşdeğer iletkenlik CA> gibi elektriksel özellikleri ve içinde bulunduklara iletkenlik hücresinin durumuna bağlı olarak sahip olduklar* elektriksel direne CRs), çözeltinin kon santrasyonuna CjO bağlı olarak değişim göstermektedir. Elektrolitik cözelti-RF alan etkileşimi, radyo- frekanslarda sığasal ya da bobinsel ölen» hücreleri yo luyla sağlanmaktadır. Rezonans yöntemlerinin yanışı r a köprü yöntemleri gibi farklı başka yöntemlerde kul lanılmaktadır. Bu çalışmada bir paralel LRC devresi kullanılmış ve Çözelti- alan etkileşimi, rezonans devresinin, rezonans koşullarındaki değişimler saptanarak incelenmiştir. Re zonans devresinin kalite faktörü Q İse, ^“=Q kayıp fak törü tanımıyla çözeltilerin kayıp faktörleri, ^'=w Su, -i tanımıyla da dlspersiyon faktörleri saptanmıştır. Kayıp ve dlspersiyon faktörlerinin, incelenen çözel tilere, devre parametrelerine ve çözelti sıcaklığına bağlılıkları çok sayıda û&n&yl& saptanarak, x' *& X”»Un ne şekilde değiştiği belirlenmiştir. Bobinsel hücrelerde çözelti- alan etkileşimlerinin genel olarak sığasal ve indUktif türden iki farklı etki leşimin toplamı olduğu Önerisine dayalı olarak elde edi len dispersiyon ve kayıp faktörlerinin konsantrasyona bağlılığını veren bağıntıların, deneysel verilerle tutarlı olduğu NFIT programlarıyla gösterilmiştir. îyonik relaksasyon ve Debye dipol relaksasyonu için çıkarılan bağıntılar yaklaşık aynı matematiksel biçime sahip olmasına ratğm&n, Cole parametresi kullanılarak elde edilen di elektrik soğurma ve dispersiyon fonksiyon larına benzerlik taşıyan bağıntılarımızın çözelti -al an etkileşimini oldukça tutarlı bir şekilde ifade edebildi ği görülmüştür. XIV

Özet (Çeviri)

SUMMARY RADIÛ-FREÛUENCY INTERACTIONS IN Ei^ECTROLYTIC SOLUTIONS The investigation of electrolytic solutions at radio-frequencies has been realized in two types of interaction C or measuring ) cells, namely the capacitive and the inductive cells. This method goes back to 1940*es where the work of For men and Crisp IIOJ can be considered the starting point. The capacitive measuring cells have found wide application and the capacitatlve interactions at radio-frequencies have been interpreted satisfactorily at a theoretical basis. Though the inductive cells have also been used for the same porpose as an alternative for capacitive cells, the interpretation of the inductive interaction proposed some difficulties. Electrolytic solutions have some electrical properties which may be named as; specific conductance C c ), the equvalent conductance t A } and the electrolytic resistance C R }. These properties depend on several parameters, such* as the solvent, solute measuring temperature, and the type of measuring cell used C for R 2>. Either a capacitive measuring cell or an inductive one, responds to the above parameters specifying the electrolytic solution, whatever experimental method has been used. XVThe experimental methods to measure the interactions of electrolytic solutions with the electromagnetic fields present, may be divided into two main groups. In capacltive interactions, the electrolytic solution to be observed is inserted into the radio-frequency electric field within the volume of a capacitor which is generally a parallel plate one. The inductive measuring cells are in general solenoldal coils, and the electrolytic solutions are inserted into the coll in which there exists an electromagnetic field. Both type of measuring cells may be an element of a series or parallel LRC resonant circuit at radio- frequencies or the measuring cells may be an element of an impendance bridge. This work has been completed using only a parallel LRC resonant circuit and the coil element has been chosen as the measuring cell. In Chapter II the experimental set up and the methods of measurement at resonance have been described in detail. The resistance R of a parallel LRC resonance circuit has been determined as a function of resonance frequency keeping L constant; and keeping frequency constant, R has i>&&n determined as a function of L. These measurements reveal that the LRC resonant circuit have a loss resistance dependent on circuit parameters. The parallel LRC resonant method is more complicated in comparison with a series on© in both the resonance conditions and observation of interactions of electrolytic solutions with RF electromagnetic fields. To be able to make sensible measurements in a parallel LRC circuit a resistance R has been connected in series with the RF generator and°the LRC oscillating circuit. The selection of R depens on some criteria, f 2, 26, 33J. ° Chapter III gives In detail, the experimental observations and measurements related to radio- frequency interactions in electrolytic solutions. XVTThe measuring cells consisting of about seventy colls most of which are solenoidal and each of them is different in some way were used in this work. The quality factor and the loss factor described in Chapter II were determined here for measuring cells containing electrolytic solutions. The coil inductance has been assumed to be complex as offered by f£6J and the derivations by (24, 26,331 for loss factor and dispersion factor were used to determine x“ and x' from the experimental data. The experimental data obtained for several electrolytic solutions for different circuit parameters were classified and the dependence of 3;' and x”on the concentration of an electrolytic solution was expressed as graphs and functions where possible* x“ *s LogCyV}- ) graphs show some general characteristics as having a maximum for which the concentration is specific for each solution when the other parameters art» the same. X' vs Logtj-v^ ) graphs have also the same shape for any electrolytic solution. An observation on x”and x* vs L.oqCyyy i graphs revals that x“ m K.\S2S x\ ? * f°r any sol utl on. Some other observations may be summarized as follows, O xH vs F is linear for any solution max CL« const. } i O x”vs L is linear CF«const»i lily y vs F is linear CL»Constant) for any solution, where y denotes the concentration for >“. w» man i*0 ^ vs T graphs for a solution may be Tfi approximated by two linear parts. XVIIThe experimental data and the graphs plotted by them, clearly show the relation between the circuit parameters and the loss factor t***} and dispersion factor t'#'3. For the interpretation of the observed results which stein froi» the interactions between the electrolytic solution and electromagnetic field, some models have already been proposed. Chapter IV discusses these interaction models. The capacitive coupling is the dominant interaction in a coil type of measuring cell. GLiner 1121 proposes the capacitive coupling model for a series LRC resonant circuit ar>d Cetin f24J gives relations for x”ana X' for a parallel LRC circuit showing the dependence on solution concentration and circuit parameters, by using capacitive coupling equivalent circuit. For a measuring cell of inductive type, there is another interaction besides capacitive cuopling, which can be observable only at high specific conductivities. Relatively high conductivities for electrolytic solutions are obtained at high solution concentrations, or for a certain concentration, acids or bases have a much larger value than salt solutions. Therefore, HC1 and other acid solutions were observed to have increasing loss factors over a certain solution c one en t rati on. In general, for ordinary salt solutions, the inductive interaction and the dependent loss factors were observed to be negligible by LRC resonance method. Considering both the capasitive and the inductive losses in electrolytic solutions, relationships were derived for x* am* %“ *n terms of concentration. These functions were fitted with the experimental data and it- was observed that they are in good agreement. The functions for capacitive coupling which give x' and x”vs LogCy //), actually have the same mathematical forms with those of Debye dielectric absorption and dispersion for a«0. XVIIIThe Cole parameter or was introduced by Cole- Cole £28 J to state the cases which depart from Debye relations. A similar a parameter enters in our fuctions due to the dependence of equivalent conductance A on concentration. Introduction of this a parameter, Cand also ft for inductive coupling} makes the experimental data fit to the functions for x4 ana X“ vs LogC concentration). Chapter V summarizes the results and gives a general comment. The parallel LRC resonant method can be used as a system to determine the concentration of a solution by using a calibration cuty& obtained before. The same system can be used to determine the conductivity of any solution still using a calibration curve already drawn. The capacitive coupling relations for x”anc* X' give limiting relations which are exactly consistent with experimental results, such as y*., X vs F, y vs JL, y vs *. ması * man m XIX

Benzer Tezler

  1. LRC devresi ile RF alan çözelti etkileşiminde kayıp faktörleri ve hücre sabitleri

    Başlık çevirisi yok

    ALİ ÇORUH

    Yüksek Lisans

    Türkçe

    Türkçe

    1996

    Fizik ve Fizik MühendisliğiSakarya Üniversitesi

    Fizik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. YILMAZ GÜNEY

  2. Bazı asit çözeltilerinin radyo frekans altında kayıp ve dispersiyon faktörlerinin incelenmesi

    Loss and dispersion factors study some acidic solution under radio frequency

    MURAT GÜLER

    Yüksek Lisans

    Türkçe

    Türkçe

    2007

    Fizik ve Fizik MühendisliğiSakarya Üniversitesi

    Fizik Ana Bilim Dalı

    Y.DOÇ.DR. YILMAZ GÜNEY

  3. Bazı asit-tuz çözeltilerinin radyo frekans altında kayıp ve dispersiyon faktörlerinin incelenmesi

    Loos and dispersion factors study some acidic-salt solution under radiofrequency

    MUSA YIĞIN

    Yüksek Lisans

    Türkçe

    Türkçe

    2006

    Fizik ve Fizik MühendisliğiSakarya Üniversitesi

    Fizik Ana Bilim Dalı

    Y.DOÇ.DR. YILMAZ GÜNEY

  4. Radyo frekans titrasyonu

    Radio frequency titrations

    MUZAFFER ERDOĞAN

    Yüksek Lisans

    Türkçe

    Türkçe

    1997

    Fizik ve Fizik Mühendisliğiİstanbul Teknik Üniversitesi

    Fizik Ana Bilim Dalı

    DOÇ. DR. MUSTAFA ÇETİN

  5. AISI 316L paslanmaz çeliğinin gliserin ve ethanolamin çözeltileri içerisinde elektrolitik plazma yöntemi ile yüzey sertleştirmesi

    Surface hardening of AISI 316L stainless steel in solutions containing ethanolamine and glycerin by electrolytic plasma method

    SEMİH ÖZBEY

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    Metalurji MühendisliğiGebze Yüksek Teknoloji Enstitüsü

    Malzeme Bilimi ve Mühendisliği Ana Bilim Dalı

    DOÇ. DR. METİN USTA