Geri Dön

Saray helvasının kalitesine bağıl nemin ve sıcaklığın etkisi

Stability of palace halva in relation to storage temperature and relative humidity

  1. Tez No: 398079
  2. Yazar: ÖZER ATIL
  3. Danışmanlar: PROF. DR. MERAL KILIÇ AKYILMAZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Gıda Mühendisliği, Food Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Gıda Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 63

Özet

Saray helvası, ülkemize özgü geleneksel unlu bir şekerlemedir. Üretiminde başlıca şeker, yağ ve un kullanılmakta ve geleneksel yöntemle üretilmektedir. Saray helvası şeker içeriği yüksek ve su aktivitesi düşük bir üründür. Su aktivitesi düşük şekerlemelerin depolama kalitesine etki eden en önemli faktörler bağıl nem ve sıcaklıktır. Saray helvası nem almaya eğilimli bir üründür. Bu tip ürünlerde en çok rastlanan kalite sorunu, nem almaya bağlı olarak üründe yapı değişimidir. Bu çalışmada, saray helvasının kalitesine depolama sıcaklığı ve bağıl nemin etkisi incelenmiştir. Saray helvası numuneleri 25 ve 35°C'de %22-90 arasında farklı bağıl neme sahip ortamlarda denge nemine ulaşılıncaya kadar depolanmış ve depolama sonrasında üründeki kalite değişimleri belirlenmiştir. Üründe su aktivitesi, hacim değişimi, tekstür, oksidasyonun göstergesi olarak TBA değeri ve renk analizleri yapılmıştır. Üründe sıcaklık ve bağıl neme bağlı olarak hal değişimlerinin belirlenmesi için X-ışını kırınımı cihazı ile kristal varlığı araştırılmıştır. Ayrıca saray helvasının bu iki sıcaklıktaki adsorpsiyon izotermleri çizilerek ürüne uygun bir sorpsiyon modeli belirlenmiştir. Saray helvası 25°C'de bağıl nemin %21'den yüksek olduğu koşullarda depolandığında sertlik değeri artış göstermiş, %44 bağıl nemde en yüksek sertliğe ulaşmış ve bu bağıl nemden daha yüksek bağıl nem koşullarında sertlik değeri azalmıştır. Sıcaklık 35°C olduğunda sertlikte benzer bir eğilim gözlenmiş ve en yüksek sertlik %32 bağıl nem değerinde saptanmıştır. Saray helvasının hacminin her iki sıcaklıkta da, %75 bağıl nem değerinden yüksek bağıl nemlerde azaldığı, ürünün yapısını koruyamadığı ve eridiği gözlenmiştir. Bağıl nem arttığında saray helvasının renginde koyulaşma olduğu gözlenmiştir. Ölçülen L* değerinin iki sıcaklık için de %64 bağıl nem değerinden yüksek bağıl nemlerde azaldığı saptanmıştır. a* değerinin sürekli bir artış gösterdiği ve %64 bağıl nem değerinden sonra bu artışın daha fazla olduğu belirlenmiştir. b* değerinde %64 bağıl nem değerine kadar artış sonra da azalma saptanmıştır. Her iki sıcaklıkta da %44-54 bağıl nemlerde oksidasyon minimum düzeyde gerçekleşmiş, bu nem değerlerinden daha düşük ve yüksek nem değerlerinde oksidasyonda artış görülmüştür. En fazla oksidasyon %75'ten daha yüksek bağıl nemlerde gözleniştir. Saray helvasının adsorpsiyon izotermi, şeker içeriği yüksek ürünlerde görülen J tipi, Tip 3 izotermine benzer çıkmıştır. Halsey, Henderson ve Iglesias ve Chirifie modelleri ürüne uygun model olarak bulunmuştur. X-ışını kırınımı cihazı ile yapılan ölçümlerde, saray helvasının üretimden sonra camsı halde olduğu bulunmuştur. Sıcaklık 25°C ve bağıl nem %54 ve sıcaklık 35°C ve bağıl nem %32 olduğunda kristal yapıların var olduğu gözlenmiştir. Saray helvasının kalitesi üzerinde bağıl nem ve sıcaklığın önemli düzeyde etkisi olduğu saptanmıştır. Üründe sıcaklık ve bağıl neme bağlı olarak meydana gelen hal değişimleri ürünün yapısını, kimyasal reaksiyonlar ürünün rengi ve tadını değiştirebilir. Bu nedenle üretildikten sonra oluşabilecek kalite kayıplarını önlemek için uygun bir ambalaj kullanılmalı ve ortam sıcaklık ve bağıl nemi kontrol edilmelidir.

Özet (Çeviri)

Palace halva is a traditional confectionery product of Turkey. Sugar, wheat flour and milk fat are the main components of this halva. It has a special fibrous, soft and brittle structure, which melts in the mouth. The product has low water activity hence tendency to adsorb water. Physical deterioration is observed in the product during storage. Storage relative humidity and temperature are the major factors affecting quality and shelf life of the product. Changes in quality of palace halva were investigated in this research at different storage relative humidities and temperatures. Halva samples were stored at different relative humidity values in the range of 22-90% at 25 and 35°C until equilibrium was reached. Changes in quality of palace halva were followed by measurements of volume change, hardness, lipid oxidation and color. Physical state of the product was determined by X-ray diffractometry. Adsorption isotherms were determined for 25 and 35°C and modelled and compared by using isotherm models published in the literature. Adsorption isotherms were established by applying isopiestic method. Halva samples were stored in eight different jars with different relative humidity. Different relative humidities were obtained by preparing supersaturated solutions of salts including CH3COOK, MgCl2, K2CO3, Mg(NO3)2, NaBr, NaCl, KCl and BaCl2 in the jars to have relative humidities in the range of 22-90% in the headspace. Halva samples were kept on a stand in the headspace of the jars. Jars were stored in incubators at 25 and 35°C. Gravimetric method was used to determine the time when the samples reached equilibrium. Eight different isotherm models were tested to choose the best fitting model to water adsorption data. These models were Oswin, Henderson, Halsey, Iglesias-Chirife, Caurie, Chung-Pfost, Kuhn and Bradley models. Regression coefficients (R²), mean relative error (MRE) and standart of the mean (SEM) were calculated by using a computer program and best model was chosen by comparing the results. Hardness of the samples were measured by applying penetration method with a 2 mm-diameter probe. The color was mesured by using a colorimeter. L*, a* and b* values were measured and total color change (ΔE*) relative to color values of the original sample was calculated. Volume of the samples was calculated from their heights and base areas. Lipid oxidation was measured by using thiobarbituric acid (TBA) method. In this method, oxidation products were seperated by Kjeldahl distillation and reacted with TBA reagent. Amount of TBA reactive substances (TBARS) in the samples was determined spectrophotometrically. X-ray diffractometry was used to determine physical state of palace halva samples. The instrument was run with a 1 minute dwell time at each 1° from 5° to 27° 2-theta angles. Computer software was used to generate the X-ray diffraction plot of intensity vs. 2-theta angle. Samples stored at three relative humidity levels at two temperatures were chosen for X-ray diffraction analysis to explain phsyical changes observed in the product. Adsorption isotherms of palace halva were found to be similar to those of other foods with high amounts of sugar. Halsey, Henderson and Iglesias-Chirifie models were found to be suitable for adsorption isotherm of palace halva. Hardness of palace halva increased when stored at 25°C and higher than 21%relative humidity. Highest hardness value was obtained at 44%relative humidity at 25°C. Halva samples softened at relative humidities higher than this value. A similar trend was observed in halva samples stored at 35°C. Highest hardness value was measured at 32% relative humidity at this temperature. Changes in the hardness value of halva was found to be more at 35°C compared to those occurred at 25°C. There was no difference in the volume of palace halva at both temperatures upto 75% relative humidity. At relative humidities higher than this value, samples' height and volume decreased. Halva samples could not maintain their original shape and they melted at relative humidity values higher than 75%. They lost their brittle and fibrous structure. Color of the palace halva tended to darken as relative humidity was increased. The L* indicating the lightness of the color of the samples were found to decrease at relative humidity values higher than 64% at both temperatures. The a* value, indicating green-red tones of the color, was found to increase as relative humidity was increased and the increase was higher at relative humidity values higher than 64%. The b* value, showing the blue-yellow tones, was found to increase upto 64% relative humidity but it decreased after this value. ΔE* value slightly changed upto 64% relative humidity, but it increased dramatically at higher relative humidities at both temperatures. Amount of TBARS in palace halva samples was found to be at a minimum at 44-54% relative humidity values at both temperatures. At higher and lower relative humidities, TBARS tended to increase. The increase was more at relative humidities higher than 54%. The trend observed in the amount of TBARS with increasing relative humidity was in accordance with the lipid oxidation-water activity relationship at both temperatures. Changes in the physical state of the palace halva were found to be related with the changes in the hardness of the product. Physical state of halva was found to be changed from glassy to crystalline with increasing relative humidity. Fresh palace halva was found to be in glassy state by X-ray diffraction analysis. Crystalline state was observed in the halva samples stored at 54% relative humidity at 25°C and 32% relative humidity at 35°C. Temperature increase was found to accelerate this change and allowed the state transition to take place at a lower relative humidity. These findings also showed that physical state of the samples changed within the time required for reaching equilibrium at certain relative humidities during the determination of adsorption isotherm. Stability of palace halva was determined in relation to storage temperature and relative humidity. It was found that storage temperature and relative humidity had important influence on the quality of palace halva. Changes in storage temperature and relative humidity may cause changes primarily in the structure of the product. In addition, chemical reactions may cause changes in color and taste of the product. For this reason, palace halva should be packed in moisture-proof packaging and stored at controlled temperature and relative humidity to avoid quality loss during storage.

Benzer Tezler

  1. Bir un değirmeninde hava stabilizasyonunun otomasyonu

    Automation of air stabilization in a flour mill

    MUSTAFA ÖZDEMİR

    Yüksek Lisans

    Türkçe

    Türkçe

    2001

    Elektrik ve Elektronik MühendisliğiSelçuk Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ŞİRZAT KAHRAMANLI

  2. Orman endüstrisi işyerlerinde hava kalitesi ve mikrobiyolojisi

    Quality and microbiology of air in forest products endustry

    ALİ GÖKER

    Yüksek Lisans

    Türkçe

    Türkçe

    1994

    Ormancılık ve Orman Mühendisliğiİstanbul Üniversitesi

    Orman Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HALUK ÜNLÜGİL

  3. Yeni tip püskürtmeli kurutucuda ısı ve kütle transferinin incelenmesi

    Investigation of heat and mass transfer in new type spray dryer

    SİNEM IŞIK

    Doktora

    Türkçe

    Türkçe

    2019

    Makine MühendisliğiFırat Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. CENGİZ YILDIZ

  4. Bilgisayar destekli tali havalandırma tasarımı

    Computer aided design of auxiliary ventilation

    MUSTAFA ÖNDER

    Yüksek Lisans

    Türkçe

    Türkçe

    1996

    Maden Mühendisliği ve MadencilikEskişehir Osmangazi Üniversitesi

    Maden Mühendisliği Ana Bilim Dalı

    DOÇ.DR. SAİM SARAÇ

  5. Farklı azotlu gübre dozlarında yetiştirilen Ekinezya türlerinde (Echinacea pallida(Nutt) Nutt, Echinacea purpurea (l.) Moench) uygulanan farklı kurutma yöntemlerinin ekstrakt kalitesi üzerine etkileri

    The effects of various drying methods used Echinacea species (Echinacea pallida(Nutt) Nutt, Echinacea purpurea (l.) Moench) are cultivated different nitrogen fertilizer dozes on extract quality

    GÜLAY ÇOKSARI

    Yüksek Lisans

    Türkçe

    Türkçe

    2012

    Eczacılık ve FarmakolojiSelçuk Üniversitesi

    Tarla Bitkileri Ana Bilim Dalı

    DOÇ. DR. YÜKSEL KAN