Geri Dön

Weyl hiperyüzeylerinde genelleştirilmiş laguerre fonksiyonu

Laguerre's function in a weyl hypersurface

  1. Tez No: 39832
  2. Yazar: SEZGİN ALTAY
  3. Danışmanlar: DOÇ.DR. AYNUR UYSAL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Matematik, Mathematics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1994
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 49

Özet

ÖZET Genelleştirilmiş Laguerre fonksiyonlarının incelendiği bu çalışma üç bölüm den oluşmaktadır. Birinci bölümde, bir Weyl uzayının metrik tensörüne ait uyduların genelleştirilmiş türevleri ve genelleştirilmiş kovaryant türevleri tanımlanarak, n-li dikgen bir şebekeye ait vektör alanlarına ve bunların karşıtlarına ait türev formülleri verilmiştir. Çalışmanın ikinci bölümünde ise, Wn+ı Weyl uzayına ait n normalinin Wn hiperyüzeyine ait m vektörü doğrultusundaki tendansının bu doğrultudaki normal eğriliğin negatifine eşit olduğu gösterilmiştir. Wn hiperyüzeyinin her noktasından bir eğrisi geçmek üzere Wn+\ Weyl uzayına ait (A) kongrüans eğrisinin A teğet vektörünün kontravaryant bileşeninin C ve C eğrileri doğrultusundaki genelleştirilmiş kovaryant türevleri bulunmuş; ayrıca Vj, genelleştirilmiş kovaryant türev sembolü olmak üzere bir D operatörü tanımlanmıştır. Ayrıca, C eğrisinin herhangi bir P noktasındaki A kongüransına göre normal eğrilikle ilgili bir teorem ispatlanmıştır. Son bölümde ise, Wn de m teğet vektörüne sahip C eğrisinin bu doğrultudaki genelleştirilmiş Laguerre fonksiyonu ve Laguerre eğrisi tanımlanmıştır. Bununla ilgili olarak iki teorem ispatlanmış ve eğer (A) kongrüansı normaller kongrüansı olarak alınırsa genelleştirilmiş Laguerre fonksiyonunun [7] deki koşulları sağladığını gösteren son bir teorem daha ispatlanmıştır. Bu bölümde son olarak Weyl uzayından Riemann uzayına geçildiğinde [8] de ki Riemann hiperyüzeylerine ait Laguerre fonksiyonu elde edilmiştir. iv

Özet (Çeviri)

SUMMARY LAGUERRE'S FUNCTION IN A WEYL HYPERSURFACE An n-dimensionai manifold Wn is said to be a Weyl space, if it has a confor- mal metric tensor g%j and a symmetric connection satisfying the compatibility given by the equation Vk9ij - 2Tkgij = 0, where Tk denotes a covariant vector and Vfcfifjj denotes usual covariant derivative. Under renormalization of the fundamental tensor of the form ğij = X2gij the complementary vector T,- is transformed by the law Ti = Ti + di In A, where A is a function of the point. In n-dimensional Weyl space Wn, the independent vector fields V* (r = 1, 2,..., n) determine an n-dimensional net ( V, V,..., V J. Let A be a satellite of gij with weight {k}. d{A given by the equation diA = diA-kTiAr is said to be the prolonged derivative of A and VaA, given by the equation VaA = VaA - kTsA is called the prolonged covariant derivative of A. The prolonged covariant derivatives of the vector fields V* and their recip rocals Vi are, respectively, given by * Ot Ot (T IT From these formulas, it follows that Tic COS are, respectively, the curvature tensor of Wn and the angle between the directions determined by V and V. Let Wn (gij,Tk) be a hypersurface, with coordinates ul(i = 1, 2,..., n), of a Weyl space Wn+i (ffaft, Tc) with coordinates xa(a = 1, 2,..., rc+1) Suppose that the metrics of Wn and W“+i are elliptic and that they are given, respectively, by gijduxdui and gabdxadxb which are connected by the relations 9ij = 9ahX*xhi (a,b= l,2,---,n + l;i,j = l,2,---,n) where zf denotes the covariant derivative of xa with respect to u\ The pro longed covariant derivative of A, relative to Wn, and Wn+i, are related by VkA = x%VcA (jfc = l,2,---,n;c= l,2,---,n + 1). Let na be the contravariant components of the vector field in W”+i normal to W“, and let it be renormalized by the condition gabnanb = 1. The moving frame {aj^ra,,} on Wn, reciprocal to the moving. frame. {xf,na} is defined by the relations nana = 1, naXi = 0, naxxa = 0, x1xJa = 8\. On the other hand, we have the covariant derivatives of x”with respect to u* Vkx* = wikna. We have the prolonged covariant derivatives of na with respect to uk Vfcna = -gilWjkx*. Let C : u* = u% (s) be any curve in Wn passing through a point P and m', m°, the contravariant components of the tangent vector to the curve C in Wn and Wn+i which are renormalized by the conditions gijin'm1 - 1 and flfatmam6 = 1, respectively. Hence m Vn in = -Kn viis said to be the tendency of the n in the direction of the vector m in Wn, where Kn is the normal curvature of the curve C. Consider a curve C in W“with tangent vector of components m\ and prin cipal vector of components m\ relative to Wn> According to [6], at any point P on the geodesic tangent to the curve C, we have the following Prenet formulae: - m!j. = Kxmx+1 - Kx-\mxx_x (x = 1, 2, ?.., n + 1) where Kq = Kn+i = 0, and the vectors mi,m2,...,mn+i are mutually orthog onal in Wn+i. In particular -mi = Kim\ where K\ is the first curvature of the curve Cand j^ is the symbol of the prolonged derivative in the direction of the curve C. The normal curvature vector of C in the direction of ra° is denoted by Kn. We find Kn = wijm\m{. On the other hand, the function Tg = Wijm\m32 may be regarded as the invariants of the geodesic torsion of the curve C relative to the normal component n°. Let Aa be the contravariant components in Wn+i, of the tangent vector A to a curve of the congruence (A) such that one curve of the congruence passes through each point of Wn. Resolving A tangentially and normally to Wn, we have Aa = xft1 + rna viiwhere t = gah\a\h = gımtltm + r2. Choose a curve C : ul = ul (s') in Wn such that 6j and ba are the contravariant components of the tangent vectors to the curve C in Wnand Wn+i which are normalized by the conditions gijb%V == 1 abd gacbabc - 1, respectively. Hence the prolonged covariant derivative of A° with respect to the curve C is given by and the prolonged covariant derivative of Aa with respect to the curve C”is given by k\a- =(KX\nn* + KMgz*)t. where (i) K\in, K\ig are the normal curvature and geodesic curvature of the congru ence (A) with respect to C and K\in, K\ig are the normal curvature and geodesic curvature of the same congruence with respect to C“. (ii) n is the vector along the normal curvature vector of the congruence (A) which is normalized by gabnanh = 1. z, ”z are the vectors along the geodesic curvature vector of congruence (A) with respect to C and C which are normalized by gabzazb = 1 and ğabZazb - 1> respectively. (iii) Vj is the symbol for the prolonged covariant differentiation. We have ex pressed the prolonged covariant derivative of A with respect to the curve C in the following form: - - = rnJ V,-A OS In addition, the prolonged covariant derivative A with respect to the curve C is given by Ö4~ = VVjV ?. OS viiiLet us define the operator D D = xtfiVj where the operator Vj is the symbol of the prolonged covariant differentiation. We find that Kn =wikm\m\ Kgml2 =mJVfcmj where Kn, Kg are the normal curvature and geodesic curvature of the congru ence (A) with respect to C, respectively. Hence, we obtained mDm = Knna + Kgba Similarly, we have mD\ = {KX\nna+KMgza)t where K\ın, K\ig are the normal curvature and geodesic curvature of the con gruence (A) with respect to C. We obtained KX\gtzl = m> (v/ - rghlwhj) and Kx\nt = bi(İ7jr + tlwjl) Kx\gtzl = V (Vjt1 - rg^Wi/j where K\ın, K\inaxe the normal curvatures of the congruence (A) with respect to C and C, respectively and K\tg, K\ig are the geodesic curvatures of the congruence (A) with respect to C and C“, respectively. ixLet gj = Vjt1 - rgdWij, Sj = Wjit1 + Vjr. Then we have İ7jXc = q'jxl + Sjnc Hence rri- 8s m-z - m = -mhm^mk (Vkqhj - 2Tkqhj - SjWkh) ? We obtained -m'mkmk(Vkqhi - sjWkh) = - rn- - m - 2Tkqhjm^mhmk. We shall call --m*mhmk (Vkqhj - SjWkh) as the the generalised Laguerre function for the direction ra and we may denote this by Lxi- A curve in Wn for which the tangent vector m satisfies the equation L\ı = 0 as generalised La guerre line. Let s is the arc length along the curve C. Hence L\i = ??- ? ”+ KxigKg cos + KxigKgt cos 0 + KxinKnt - 9hlTjtlKg (bh + V) - gMmhmjmkVk (Tjt1) - 2Tkqhjmhmjmk where 8m,_,- _, Is DXrh = KxigKgt cos 6, mPA-r- = KxinKnt + KxigKgt cos as When A is normal to Wn and Pi = Tfcmf, VfcliTn = Vfe/

Benzer Tezler

  1. Weyl hiperyüzeylerinde genelleştirilmiş darboux fonksiyonu

    Darboux function in a weyl hypersurface

    FÜSUN ÖZEN

    Yüksek Lisans

    Türkçe

    Türkçe

    1994

    Matematikİstanbul Teknik Üniversitesi

    DOÇ.DR. AYNUR UYSAL

  2. Weyl hiperyüzeylerinde Chebyshev şebekeleri

    Chebyshev nets in weyl hypersurfaces

    AYŞE FÜSÜN NURCAN

    Yüksek Lisans

    Türkçe

    Türkçe

    1994

    Matematikİstanbul Teknik Üniversitesi

    PROF. DR. ABDULKADİR ÖZDEĞER

  3. Pseudo simetrik manifoldlar

    Pseudo symmetric manifolds

    CİHAN ÖZGÜR

    Doktora

    Türkçe

    Türkçe

    2001

    MatematikUludağ Üniversitesi

    Matematik Ana Bilim Dalı

    PROF.DR. KADRİ ARSLAN

  4. Weyl-wigner-groenewold-moyal kuantizasyonu

    Weyl-wigner-groenewold-moyal quantization

    İLHAMİ BUĞDAYCI

    Yüksek Lisans

    Türkçe

    Türkçe

    1998

    Fizik ve Fizik MühendisliğiAnkara Üniversitesi

    Fizik Ana Bilim Dalı

    PROF. DR. ABDULLAH VERÇİN

  5. Banach uzaylarda operatörlerin Weyl tipi eşitsizlikleri

    Weyl type inequalities of operators in Banach spaces

    ÜNAL KEMAL ALKAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    MatematikGümüşhane Üniversitesi

    Matematik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ LALE CONA