A tissue identification framework for medical images and applications to digital radiographic images and MRI
Başlık çevirisi mevcut değil.
- Tez No: 401273
- Danışmanlar: PROF. KEVIN J. PARKER
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2002
- Dil: İngilizce
- Üniversite: University of Rochester
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 136
Özet
Özet yok.
Özet (Çeviri)
In this thesis, we present a clustering-based medical image segmentation framework for the identification of targeted tissues or structures. The concept behind our framework is the shortcomings of conventional clustering schemes due to the characteristics of medical images. The framework consists of three main stages, namely region construction, region labeling using the voting procedure which is a local region-based clustering method, and label refinement. While the framework has general utility across different applications and modalities, the stages have to be modified according to the a priori information about image modality and targeted tissues or structures. We present two applications of our framework. First, the problem of segmentation of in digital radiographic images of extremities into bone and non-bone regions for image enhancement purpose is considered. The adaptation of our framework to this problem is thoroughly covered and the segmentation evaluation is performed using manual tracings as gold standard. The cartilage tissue extraction in MRI is performed as a second application. This is a three dimensional problem as opposed to the previous application and a crucial process for diagnosis and monitoring of joint diseases. In addition to cartilage extraction, we present the algorithms that we employed for thickness computation of extracted cartilage tissue. The performance of thickness computation algorithm is evaluated using synthetic three dimensional phantoms. We perform the validation of the whole cartilage extraction-thickness computation system using a histology study which has already been performed on animals as the gold standard.
Benzer Tezler
- Geometric analysis of pathological changes in the brain using mri images for tumor diagnosis
Başlık çevirisi yok
AYNOOR SAMEER MAHMOOD AKMAKCHI
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MESUT ÇEVİK
- Automatic identification of abnormal regions in digitized histology cross-sections of colonic tissues and adenocarcinomas using quasi-supervised learning
Kolorektal doku ve kolorektal denokarsinom sayısal histoloji kesitlerindeki anormal bölgelerin yarı-güdümlü öğrenme kullanılarak otomatik belirlenmesi
DEVRİM ONDER
Doktora
İngilizce
2012
Elektrik ve Elektronik Mühendisliğiİzmir Yüksek Teknoloji EnstitüsüElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. BİLGE KARAÇALI
- Sosyokültürel yapı ve değişim bağlamında mimari mirasın korunmasına dair bir yöntem araştırması:Kapadokya-Güzelyurt örneği
A methodical research on socio-cultural structure and change in the context of architectural heritage conservation the case of Cappadocia-Güzelyurt
EBRU ŞAHİN
- Yusufeli (Artvin) ilçesi yeni yerleşim yerindeki peyzaj düzenlemelerinde kullanılan odunsu bitkilerin tespiti ve kullanım alanlarının irdelenmesi
Determination of woody plants used in landscaping in the new settlement area of Yusufeli (Artvin) district and investigation of their usage areas
TOLGAHAN MEYDAN
Yüksek Lisans
Türkçe
2024
Peyzaj MimarlığıRecep Tayyip Erdoğan ÜniversitesiPeyzaj Mimarlığı Ana Bilim Dalı
PROF. DR. GÖKHAN ABAY