Geri Dön

Prediction of foliar biochemistry in a boreal forest canopy using imaging spectroscopy and LIDAR data

Başlık çevirisi mevcut değil.

  1. Tez No: 401534
  2. Yazar: KEMAL GÖKKAYA
  3. Danışmanlar: DR. VALERIE THOMAS
  4. Tez Türü: Doktora
  5. Konular: Ormancılık ve Orman Mühendisliği, Forestry and Forest Engineering
  6. Anahtar Kelimeler: imaging spectroscopy, LiDAR, macronutrients, N:P ratio, boreal forest
  7. Yıl: 2012
  8. Dil: İngilizce
  9. Üniversite: Virginia Polytechnic Institute and State University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 128

Özet

Özet yok.

Özet (Çeviri)

The use of satellite and airborne remote sensing data to predict foliar macronutrients and pigments for a boreal mixedwood forest composed of black and white spruce, balsam fir, northern white cedar, white birch, and trembling aspen was investigated. Specifically, imaging spectroscopy (IS) and light detection and ranging (LiDAR) are used to model the foliar N:P ratio, macronutrients (N, P, K, Ca, Mg) and chlorophyll. Measurement of both foliar macronutrients and foliar chlorophyll provide critical information about plant physiological and nutritional status, stress, as well as ecosystem processes such as carbon (C) exchange (photosynthesis and net primary production), decomposition and nutrient cycling. Results show that airborne and spaceborne IS data explained approximately 70% of the variance in the canopy N:P ratio with predictions errors of less than 8% in two consecutive years. LiDAR models explained more than 50% of the variance in the canopy N:P ratio with similar predictions errors. Predictive models using spaceborne Hyperion IS data were developed with adjusted R2 values of 0.73, 0.72, 0.62, 0.25, and 0.67 for N, P, K, Ca and Mg, respectively. The LiDAR model explained 80% of the variance in canopy Ca concentration with an RMSE of less than 10%, suggesting strong correlations between forest height and Ca. Two IS derivative indices emerged as good predictors of chlorophyll across time and space. When the models of these two indices with the same parameters as generated from Hyperion data were applied to other years' data for chlorophyll concentration prediction, they could explain 71, 63 and 6% and 61, 54 and 8 % of the variation in chlorophyll concentration in 2002, 2004 and 2008, respectively with prediction errors ranging from 11.7% to 14.6%. Results demonstrate that the N:P ratio, N, P, K, Mg and chlorophyll can be modeled by spaceborne IS data and Ca can only be predicted by LiDAR data in the canopy of this forest. The ability to model the N:P ratio and macronutrients using spaceborne Hyperion data demonstrates the potential for mapping them at the canopy scale across larger geographic areas and being able to integrate them in future studies of ecosystem processes.

Benzer Tezler

  1. Meyve dokularında niteliksel ölçüm yapabilen elle tutulabilir spektroskopik donanım tasarımı ve gerçeklemesi

    Design and implementation of a hand-held devi̇ce to spectroscopically assess fruit quality

    ALİ SARIKAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2014

    Biyoteknolojiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. FATMA İNCİ ÇİLESİZ

  2. Manisa bölgesinde 'ST segment yükselmesi olmayan miyokard infarktüsü' tanısı alan hastalarda kardiyovasküler risk faktörlerine göre koroner lezyonların dağılımının incelenmesi

    Prediction of the significance of coronary arterial lesions by the assessment of the cardiovasular risk factors in patients with 'NON-ST elevated myocardial infarction' in Manisa region

    EDA ÖZLEK

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2015

    KardiyolojiCelal Bayar Üniversitesi

    Kardiyoloji Ana Bilim Dalı

    PROF. DR. ALİ RIZA BİLGE

  3. Travmatik beyin hasarlı çocuklarda klinik, elektrofizyolojik ve görüntüleme yöntemleri ile prognoz belirlenmesi

    Prediction of prognosis by clinical, electrophysiological and imaging techniques in children with traumatic brain injury

    AHMET YILDIRIM

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2015

    Çocuk Sağlığı ve HastalıklarıEge Üniversitesi

    Çocuk Sağlığı ve Hastalıkları Ana Bilim Dalı

    PROF. DR. GÜL SERDAROĞLU

  4. Prediction of the cutting forces for robotic grinding processes with abrasive mounted bits

    Aşındırıcı taş kullanılan robotik taşlama proseslerinde kesme kuvvetlerinin tahmini

    KEMAL AÇIKGÖZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Makine MühendisliğiOrta Doğu Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ERHAN İLHAN KONUKSEVEN

  5. 3 KVA'lık kuru tip transformatörün sargı sıcaklık davranışının bulanık mantık yöntemi kullanılarak tahmini

    Prediction of a 3 KVA dry type transformer winding temperature behavior using fuzzy logic method

    BURAK DÖKMETAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Elektrik ve Elektronik MühendisliğiGazi Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. İRES İSKENDER