K. mertebeden Gauss Fibonacci ve k. mertebeden Gauss Lucas indirgeme bağıntıları
K-order Gaussian Fibonacci and k-order Gaussian Lucas recurrence relations
- Tez No: 438102
- Danışmanlar: DOÇ. DR. MUSTAFA AŞCI
- Tez Türü: Doktora
- Konular: Matematik, Mathematics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2015
- Dil: Türkçe
- Üniversite: Pamukkale Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Matematik Ana Bilim Dalı
- Bilim Dalı: Cebir ve Sayılar Teorisi Bilim Dalı
- Sayfa Sayısı: 63
Özet
Bu tezde; k. mertebeden Gauss Fibonacci ve k. mertebeden Gauss Lucas sayıları başlangıç değerleriyle birlikte tanımlandıktan sonra üreteç fonksiyonları, Binet formülleri, kombinatorial gösterimleri ve toplam formülleri elde edildi. Qk–matrisi ve yardımcı matrislerle elemanları k. mertebeden Gauss Fibonacci ve Lucas sayıları olan matrisler elde edildi. k. mertebeden Gauss Fibonacci ve Lucas sayıları ile ilgili önemli ilişki ve özdeşlikler ele alındı ve ispatlandı. Birinci bölümde, temel tanım ve teoremler verildi. İkinci bölümde Gauss Fibonacci ve Gauss Lucas sayılarının, Gauss Tribonacci sayılarının, k. mertebeden Fibonacci ve Lucas sayılarının ve Genelleştirilmiş k. mertebeden Fibonacci ve Lucas sayılarının tanımları ve önemli özdeşlikleri üzerine daha önce yapılmış çalışmalara yer verildi. Üçüncü bölümde ise; k. mertebeden Gauss Fibonacci ve k. mertebeden Gauss Lucas indirgeme bağıntıları tanımlandı. Fibonacci sayıları teorisinin önemli özellikleri ve özdeşlikleri k. mertebeden Gauss Fibonacci ve Lucas sayıları için elde edilerek ispatlandı.
Özet (Çeviri)
In this thesis; after defining k–order Gaussian Fibonacci and Lucas numbers with boundary conditions, generating functions, Binet formulas, combinatorial representations and sum formulas are given. The matrices have which entries are k–order Gaussian Fibonacci and Lucas numbers are obtained by the Qk–matrix and assistant matrices. Important relations and identities about k–order Gaussian Fibonacci and Lucas numbers are discussed and proved. In the first chapter; the basic definitions and theorems are given. In the second chapter; the definitions and identities are given without proof about Gaussian Fibonacci and Lucas numbers, Gaussian Tribonacci numbers, k–generalized Fibonacci and Lucas numbers and Generalized order–k Fibonacci and Lucas numbers that are studied before. Finally, in the third chapter; k–order Gaussian Fibonacci and Lucas recurrence relations are defined. The important properties and identities of the Fibonacci theory are obtained and proved for the k–order Gaussian Fibonacci and Lucas numbers.
Benzer Tezler
- Euclid ve yarı-Euclid uzaylarının noktasal 1-tipinden Gauss tasvirine sahip alt manifoldları
Submanifolds of Euclidean and pseudo-Euclidean spaces with pointwise 1-type Gauss map
NURETTİN CENK TURGAY
Doktora
Türkçe
2013
Matematikİstanbul Teknik ÜniversitesiMatematik Mühendisliği Ana Bilim Dalı
PROF. DR. UĞUR DURSUN
- Weyl-invariant higher curvature gravity theories
Yüksek mertebeden eğrili weyl-değişmezli kütle çekim kuramları
SUAT DENGİZ
Doktora
İngilizce
2014
Fizik ve Fizik MühendisliğiOrta Doğu Teknik ÜniversitesiFizik Ana Bilim Dalı
PROF. DR. BAYRAM TEKİN
- Riemann-Otsuki uzaylarında bazı özel eğrilerin tanımı ve incelenmesi
Investigation of some special curves in Riemann-Otsuki spaces
JETA ALO