Geri Dön

K. mertebeden Gauss Fibonacci ve k. mertebeden Gauss Lucas indirgeme bağıntıları

K-order Gaussian Fibonacci and k-order Gaussian Lucas recurrence relations

  1. Tez No: 438102
  2. Yazar: EŞREF GÜREL
  3. Danışmanlar: DOÇ. DR. MUSTAFA AŞCI
  4. Tez Türü: Doktora
  5. Konular: Matematik, Mathematics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: Türkçe
  9. Üniversite: Pamukkale Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Matematik Ana Bilim Dalı
  12. Bilim Dalı: Cebir ve Sayılar Teorisi Bilim Dalı
  13. Sayfa Sayısı: 63

Özet

Bu tezde; k. mertebeden Gauss Fibonacci ve k. mertebeden Gauss Lucas sayıları başlangıç değerleriyle birlikte tanımlandıktan sonra üreteç fonksiyonları, Binet formülleri, kombinatorial gösterimleri ve toplam formülleri elde edildi. Qk–matrisi ve yardımcı matrislerle elemanları k. mertebeden Gauss Fibonacci ve Lucas sayıları olan matrisler elde edildi. k. mertebeden Gauss Fibonacci ve Lucas sayıları ile ilgili önemli ilişki ve özdeşlikler ele alındı ve ispatlandı. Birinci bölümde, temel tanım ve teoremler verildi. İkinci bölümde Gauss Fibonacci ve Gauss Lucas sayılarının, Gauss Tribonacci sayılarının, k. mertebeden Fibonacci ve Lucas sayılarının ve Genelleştirilmiş k. mertebeden Fibonacci ve Lucas sayılarının tanımları ve önemli özdeşlikleri üzerine daha önce yapılmış çalışmalara yer verildi. Üçüncü bölümde ise; k. mertebeden Gauss Fibonacci ve k. mertebeden Gauss Lucas indirgeme bağıntıları tanımlandı. Fibonacci sayıları teorisinin önemli özellikleri ve özdeşlikleri k. mertebeden Gauss Fibonacci ve Lucas sayıları için elde edilerek ispatlandı.

Özet (Çeviri)

In this thesis; after defining k–order Gaussian Fibonacci and Lucas numbers with boundary conditions, generating functions, Binet formulas, combinatorial representations and sum formulas are given. The matrices have which entries are k–order Gaussian Fibonacci and Lucas numbers are obtained by the Qk–matrix and assistant matrices. Important relations and identities about k–order Gaussian Fibonacci and Lucas numbers are discussed and proved. In the first chapter; the basic definitions and theorems are given. In the second chapter; the definitions and identities are given without proof about Gaussian Fibonacci and Lucas numbers, Gaussian Tribonacci numbers, k–generalized Fibonacci and Lucas numbers and Generalized order–k Fibonacci and Lucas numbers that are studied before. Finally, in the third chapter; k–order Gaussian Fibonacci and Lucas recurrence relations are defined. The important properties and identities of the Fibonacci theory are obtained and proved for the k–order Gaussian Fibonacci and Lucas numbers.

Benzer Tezler

  1. Euclid ve yarı-Euclid uzaylarının noktasal 1-tipinden Gauss tasvirine sahip alt manifoldları

    Submanifolds of Euclidean and pseudo-Euclidean spaces with pointwise 1-type Gauss map

    NURETTİN CENK TURGAY

    Doktora

    Türkçe

    Türkçe

    2013

    Matematikİstanbul Teknik Üniversitesi

    Matematik Mühendisliği Ana Bilim Dalı

    PROF. DR. UĞUR DURSUN

  2. Weyl-invariant higher curvature gravity theories

    Yüksek mertebeden eğrili weyl-değişmezli kütle çekim kuramları

    SUAT DENGİZ

    Doktora

    İngilizce

    İngilizce

    2014

    Fizik ve Fizik MühendisliğiOrta Doğu Teknik Üniversitesi

    Fizik Ana Bilim Dalı

    PROF. DR. BAYRAM TEKİN

  3. Riemann-Otsuki uzaylarında bazı özel eğrilerin tanımı ve incelenmesi

    Investigation of some special curves in Riemann-Otsuki spaces

    JETA ALO

    Doktora

    Türkçe

    Türkçe

    2010

    Matematikİstanbul Üniversitesi

    Matematik Ana Bilim Dalı

    PROF. DR. LEYLA ZEREN AKGÜN

  4. A Method for identifying coherent structures in turbulent flows

    Başlık çevirisi yok

    BEDRİ ŞEFİK

    Doktora

    İngilizce

    İngilizce

    1991

    Mühendislik Bilimleriİstanbul Teknik Üniversitesi

    PROF.DR. ERDOĞAN ŞUHUBİ

  5. Transport bandlarının enine serbest titreşimlerinin hesabı

    Başlık çevirisi yok

    REMZİ ASLAN

    Doktora

    Türkçe

    Türkçe

    1984

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    PROF. DR. TURHAN ARITAN