Geri Dön

İstatistikte optimizasyon

Optimization in statistics

  1. Tez No: 45839
  2. Yazar: İNCİ AÇIKGÖZ
  3. Danışmanlar: YRD. DOÇ. DR. AYŞEN APAYDIN
  4. Tez Türü: Yüksek Lisans
  5. Konular: İstatistik, Statistics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1995
  8. Dil: Türkçe
  9. Üniversite: Ankara Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: İstatistik Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 74

Özet

ÖZET Yüksek Lisans Tezi İSTATİSTİKTE OPTİMİZASYON İnci Açıkgöz Ankara Üniversitesi Fen Bilimleri Enstitüsü İstatistik Anabilim Dalı Danışman: Yr&Doç.Dr. Ayşen APAYDIN 1995, Sayfa: 66 Jüri: YrdDoç.Dr. Ayşen APAYDIN Prof.Dr. Zehra MULUK Prof.Dr. İsmihan BAYRAMOV Bu çalışmanın amacı, kümeleme çözümlemesinde optimizasyon yöntemlerini kullanarak birden fazla dağılımdan gelen, birbirine karışmış gözlemlerin hangi dağılıma ait olduğunu belirlemektir. Bu kümeleme süreci içinde önce karma dağılımın parametreleri, Newton-Raphson ve EM algoritmaları ile tahmin edilir. Daha sonra tahmin edilen parametreler ve sonsal olasılıklara göre gözlemler kümelere atanır. Çalışmanın özgün yanım oluşturan son bölümde normal dağılıma sahip yapay veriler türetilmiş ve bu veriler kullanılarak tek değişkenli iki bileşenli normal karma bir dağılımın parametreleri tahmin edilmiştir. Tahmin aşamasında farklı karma oranları, kite ortalamaları ve kitle standart sapmaları için Newton-Raphson ve EM algoritmaları karşılaştınlmıştır. Daha sonra en çok olabilirlikle kümeleme yöntemine gözlemler kümelenmiştir. ANAHTAR KELİMELER: Optimizasyon, Newton-Raphson yöntemi, EM algoritması, Normal karma dağılım, Kümeleme çözümlemesi.

Özet (Çeviri)

ABSTRACT Masters Thesis OPTIMIZATION IN STATISTICS înci Açıkgöz Ankara University Graduate School of Natural and Applied Science Department of Statistics Supervisor: AssistProf.Dr. Ayşen APAYDIN 1995, Page: 66 Jury: Assist.Prof.Dr. Ayşen APAYDIN Ptof.Dr. Zehra MÜLUK Prof.Dr. İsmihan BAYRAMOV The purpose of this study is to determine the observations which come from more then one distribution and mixed to each other are belong to which distribution, by using the optimization methods in the cluster analysis. In the process of this clustering, firstly these parameters of mixture distribution are estimated by Newton-Raphson and EM algorithms. After that, these observations are allocated to clusters according to estimated parameters and posterior probabilities. In the last section which forms the original body of this study, the artificial data which have the normal distribution are generated and these parameters of two component univariate normal mixture distribution are estimated by using these data. At the estimation step, Newton-Raphson and EM algorithms are compared to provide different mixture proportions and population means and population standard deviations, and then these observations are clustered according to the maximum likelihood clustering method KEY WORDS: Optimization, Newton-Raphson method, EM algorithm, normal mixture distribution, Cluster analysis.

Benzer Tezler

  1. Minmad yöntemi ile rasgele bloklar model denklemindeki parametrelerin kestirimi

    Parameter estimation of randomized block design model equation by minmad method

    KAMİLE ŞANLI

    Yüksek Lisans

    Türkçe

    Türkçe

    1999

    İstatistikAnkara Üniversitesi

    İstatistik Ana Bilim Dalı

    DOÇ.DR. AYŞEN APAYDIN

  2. Entropi optimizasyon ilkeleri ile ilgili bir uygulama

    An implementation related entropy optimization prenciples

    İBRAHİM ÖZTAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    MatematikGiresun Üniversitesi

    Matematik Ana Bilim Dalı

    DOÇ. DR. NURGÜL OKUR

  3. Çok amaçlı optimizasyon problemlerine çekicilik fonksiyonu yaklaşımı

    Desirability function approach to multiobjective optimization problems

    GÖKÇE BAYSAL

    Doktora

    Türkçe

    Türkçe

    2015

    EkonometriDokuz Eylül Üniversitesi

    Ekonometri Ana Bilim Dalı

    PROF. DR. İPEK DEVECİ KOCAKOÇ

  4. Çok değişkenli yöntemlerde entropi kullanımı: Mutluluk endeksi üzerine bir uygulama

    Using entropy in multivariate methods: An application on the happiness index

    ESRA ÖNCÜL

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    İstatistikYıldız Teknik Üniversitesi

    İstatistik Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ DOĞAN YILDIZ

  5. Yapay zekâ tabanlı elektrokardiyografi sinyali ile kan basıncı tespiti

    AI-based blood pressure detection with electrocardiography signal

    DERYA KANDAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Elektrik ve Elektronik MühendisliğiSakarya Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MUHAMMED KÜRŞAD UÇAR