Geri Dön

Yer dalga iletiminde parabolik denklem (PD) yöntemi

Parabolic equation (Pe) method in ground wave propagation

  1. Tez No: 46615
  2. Yazar: ÖZLEM ERCAN
  3. Danışmanlar: Y.DOÇ.DR. LEVENT SEVGİ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1995
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 72

Özet

ÖZET Bu çalışmada, kırılma indisinin enine ve boyuna iki iki boyutlu değiştiği ortamlarda dalga iletimi problemi Parabolik Denklem (PD) yöntemi ile ince lenmiştir. Öncelikle yüksek ve çok yüksek frekanslarda küresel bir zemin üzerine düşey olarak yerleştirilen kısa bir dipolden çıkan elektromagnetik dalgaların ya yılma özellikleri ve davranışları incelenmiştir. Ortam parametreleri kontuna bağlı olduğundan problemler basit analitik bi çimde ortaya konamazlar. Bu nedenle yaklaşık ya da salt sayısal yöntemlerle çözülmeye çalışılırlar. Dalga iletim problemlerinde, analitik - sayısal yaklaşık çözümlerden en yaygın olarak kullanılanlarından biri PD yöntemidir. Burada, öncelikle yöntem tüm dikkat edilmesi gereken noktalarının üzerinde durularak incelenmiş, daha sonra tam çözümleri bilinen kanonik bir yapı ele alınarak bu tam çözümlerle PD çözümleri karşılaştırılmıştır. Son olarak da, tam çözümleri bilinmeyen problemlere PD uygulanarak elde edilen sonuçlar yorumlanmıştır. Bu amaçlarla, çalışmanın bütününde olabildiğince çok değişik parametre takımları ile incelemeler yapılmış ve elde edilen tüm sonuçlar grafiklerle ve açıklamalarla verilmiştir. iv

Özet (Çeviri)

SUMMARY PARABOLIC EQUATION (PE) METHOD IN GROUND WAVE PROPAGATION In this thesis, the propagation phenomena in 2D complex environments with arbitrary transverse and slow longitudinal variations is described in terms of Parabolic Equation (PE) method. The model presented here represents propa gation of electromagnetic waves over a spherical, finitely conducting earth and allows specification of frequency, polarization, antenna pattern, antenna altitude and tilt angle. The well-known solution method of the parabolic form of the wave equation, split-step PE (SSPE) is compared with the reference solutions obtained from Helmholtz wave equation where analytic solutions exist and also with each other through surface duct-to-elevated duct transition to show the transformation of the surface trapped modes into the elevated beams. Propagation in complex waveguide environments which may involve bound aries and/or transversely confining refractive index variations are becoming more and more interesting for the electromagnetics and microwave society. Such prob lems can be solved with analytical methods which are mostly based on mode and/or ray summations or their hybrid combination. Analytical solutions are very instructive since they give a good insight into the physics associated with non-separable problems. However, they exist only for a small amount of ideal problems which are mostly non-physical, for this reason, a lot of effort have been given on finding approximate mode-like wave objects to built fields in non- separable environments. PE method combines the physical insight of the analytical solutions and the generality of numerical solutions in a computationally efficient scheme[8,9]. The PE method can be used to solve wave propagation problems everywhere, where in the variation of the geometry and/or medium parameters can be arbitrary in the transverse domain but is slow in the longitudinal direction so as to allow approximate reduction of the wave equation to the parabolic form. The parabolic form of the wave equation is very suitable for the numerical computations. Once the initial transverse field profile is given, SSPE algorithm, which is built to satisfy the transverse boundary conditions automatically, computes the transverse field distributions at any longitudinal range value proceeding step by step. At each range step the fast Fourier transform (FFT) routine is used to carry out thetransformations between the spatial transverse coordinate and transverse wave number coordinate. SSPE method has been applied to many important and interesting wave problems also including the longitudinally varying guiding media. In this study, first the complete derivation of the parabolic wave equation from the vector wave equation is presented[7,10]. The assumed spherical earth geometry is shown in figure 1. We are concerned with describing the propagation from a source located at 9 = 0 and r = rs in the region r > a (where a is the earth's radius) and in the far field of the source antenna. The emphasis in the following discussion is on the case where the source is a vertical electric dipole (VED), but the corresponding results for the horizontal electric dipole (HED) may be provided at various point. Source Location short dipole e0,a= 0 >M0 P(r,e>0 (ll.b) U(x,z)\z^±oo^0 (ll.c) The location of the boundaries and the transverse refractive index variation of the medium permits the seperation of the 2D wave equation into transverse and longitudinal components which are ID differantial equations. The longitudinal equation gives a phase variation of exp(- ifiz) with exp(iu}t)time dependence, while transverse equation reduces to * + k2n2(x)-Ş2 u(x) = 0 u(x, z) = ü{x)t-lfiz { 12) _dx* Defining new transverse variables as k2n2{x) - f = Ax + B; p = -A~2/:i{Ax + B) ( 13) A = -a0k2 B = k2Q- &2, yields d2 - -P dp ü(p) = 0 (14) IXdifferent ranges and/or altitudes. The PD program uses FFT and inverse FFT modules at each longitudinal computation step. Extensive numerical tests have been performed for convergence, and for minimization of the anti-alising effects and truncation errors. Here, examples are presented wherein SSPE solutions on a surface duct and surface-to-elevated duct transition problems are compared with reference solu tions. The better critical transition is characterized by the transverse and lon gitudinal refractivity variations of the environment. The calculations and com parisons can be made at all radiowave frequency ranges but the results are given for the lower half (i.e., typically 3 - 15 MHz.) of the HF band. These results are applicable to surface wave HF communication especially for the surface wave HF radar applications. In the computations the coverage of the altitude and range extends to 3km. and 200km., respectively, which is the typical region of interest in surface wave HF communication systems. The initial refractivity gradient for the model is chosen as dN/dh = iOONunits/km which is associated with at mospheric ducts ör trapping layers. The positive constant ao which controls the surface duct height will then be 4. 10-7. n(x,z) i Z = -100 z = 0 z = 100 Range (km) Figure 2. The structure of the problem and the refractive index variations at different observation ranges SSPE algorithm is first tested on longitudinally invariant surface duct defined by the first profile in fig. 2. Assuming that the initial 400 N units /km. transverse refractivity gradient remains invariant for all observation ranges, yields an exact solution in terms of Normal Modes (NM) [20]. The first comparison is carried out between the NM(exact solution) and PE computations. Fig. 3. shows various altitude profiles at different observation ranges. The initial profile is built with the superposition of the equally excited first ten trapped modes and then fed into the PD.FOR algorithm. The truncation of the spectrum in kx domain is chosen to cover the transverse wave number of the highest NM considered in the altitude field distribution for the SSPE computations. The loss factor of a is introduced XIbetween Xmax/2 and Xmax. A very good agreement between the NM and SSPE results is clearly seen from the figure for the altitudes extending from the surface to five kilometers. 10000 7600 - ^-»., 2500- Figure 3. The comparisons of the exact analytical results(NM) with the SSPE compu tations at different ranges (a: loss factor) In the PD.FOR algorithm, the initial transverse profile can be constructed to correspond to the radiation field of specific antenna isotropic in the horizontal plane. In order to compare the SSPE method with NM results, the initial trans verse profile of the antenna pattern is simulated with the superposition of the NM with the suitably chosen excitation coefficients. The radiation pattern in the elevation plane simulating the Log-Periodic dipol antenna for 3MHz. is apporxi- mated with the superposition of suitably excited the first ten NM assumed which are then fed into SSPE algorithm. The results of the NM and SSPE computations for the transverse field profiles at different observation ranges are given in fig. 4. An excellent agreement between the two methods is clearly seen in the figure for the Dirichlet type boundary condition. Finally, the surface duct-to-elevated duct transition is examined. There is no reference solution for the surface duct-to-elevated duct transition. Therefore, only the SSPE results corresponding to this transition are given Fig. 5. The initial transverse field distribution at the begining of the transition region (c = Z\) is again calculated via LINEER.FOR as a modal superposition over the modes of the homogeneous surface duct. In fig. 5., the first two modes are considered in order to be able to demonstrate the transformation of energy from a trapped mode to the radiating beam. This transformation is clearly seen from the figure. In this study, a powerful tool for one way propagation problems is examined on a canonical surface duct as well as on a complex surface duct-to-etevated duct transition problems. The SSPE algorithm in this form may be used for all kinds of refractive index profiles under slow longitudinal variations or in the paraxial regions and for any transverse boundary variations [18,19]. xn(a) 6000 4000- 2000- (b) Figure 4. The comparisons of the analytical solution based on modal summation and SSPE algorithm. Figure 5. The transformation of the surface trapped modes into elevated beams for the lowest two modes. xiu

Benzer Tezler

  1. Dalga etkisindeki su altı borusu altında zamana bağlı olarak oluşan oyulmaların araştırılması

    Investigation of temporal scour development below submerged pipe under the wave effect

    MUSTAFA DOĞAN

    Doktora

    Türkçe

    Türkçe

    2013

    İnşaat MühendisliğiDokuz Eylül Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. YALÇIN ARISOY

  2. Analysis of wave propagation characteristics and design methods in two dimensional photonic bandgap structures

    İki boyutlu fotonik bant durduran yapılarda dalga analizi ve tasarım yöntemleri

    ONUR ERKAN

    Doktora

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SERKAN ŞİMŞEK

  3. Farklı kesitlerdeki şerit iletim hatlarına konformal dönüşüm tekniklerinin uygulanması

    Applications of conformal transformation techniques to strip transmission lines that have different cross section shapes

    VOLKAN AKAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2004

    Elektrik ve Elektronik MühendisliğiHacettepe Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF.DR. ERDEM YAZGAN

  4. OFDM-RoF iletim sisteminin farklı modülasyon teknikleri ve farklı kanal koşulları için performans analizi

    Performance analysis of OFDM-RoF transmission system for different modulation methods and channel conditions

    MUHARREM AÇIKGÖZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Elektrik ve Elektronik MühendisliğiGazi Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MÜZEYYEN SARITAŞ

  5. Ultrasonik hoparlör sistemlerinde kullanılan modülasyon türlerinin karşılaştırmalı analizi

    Comparative analysis of modulation types used in ultrasonic speaker systems

    SERKAN ÇOLAK

    Doktora

    Türkçe

    Türkçe

    2024

    Bilim ve TeknolojiANKARA MÜZİK VE GÜZEL SANATLAR ÜNİVERSİTESİ

    Müzikoloji Ana Bilim Dalı

    PROF. DR. ABDURRAHMAN TARİKCİ