Geri Dön

2 boyutlu Schur algoritması

2-D Schur algorithm

  1. Tez No: 46616
  2. Yazar: CEMİL YAMAN
  3. Danışmanlar: PROF.DR. AHMET H. KAYRAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1995
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 90

Özet

Özet yok.

Özet (Çeviri)

As the Schur structures form orthogonal bases, linear adaptive algorithms such as least mean-square (LMS) and recursive least-squares (RLS) can be applied to solve for 2-D system paramaters. It is anticipated that the orthogonality property of the structure can be utilized to derive 2-D schur autoregressive-moving average (ARMA) models, and to solve the 2-D joint-process estimation problem.In the Schur order-update recursions, one can find general expressions for reflection coefficients forward and backward gap functions and error powers in more compact form. For p = 1,2,..., m and n = 1,2,...,p lattice coefficients can be written as: ?p(n) _ _p-n. -p(«) _ LP- Mn-1) ' LP Ep-n A(»-D and the minimum mean-square errors are given by ET = E^m~l) (l -I^“0 f^0) and tn ' m \ o m J The general form of the orthogonal 2-D schur equations are given by » 8Z.W Sp (W i tpn) Sp-n (*l>*2) Sp («^»«y p=l,2,...,m; n=l,2,...,pand starting withg^0)(^) = ğ? (kxJQ = R^k^-p) for p= 0,1,..., m algorithm starts from the 0-th order and continues up to the m-th order. The prediction error powers can be written as Ep-n EP i 1 _f(”)2 P“lit 1 p-n Ep-n p(H-l) In this thesis, an example has been given in order to explain the outline of the theory by means of a first-quadrant support second order quarter-plane model. The proposed 2-D Schur structures are amenable to systolic implementations. This is quite significant as the processing of the 2-D data fields such as images in real time require high data rates. The simplicity of the algorithm is the main attractive feature and the only requirement is to select an ordering schema with two types of shifts (vertical and horizontal) in the prediction support region as a result of this, the first stages are 1-D gap functions. -vin-As the Schur structures form orthogonal bases, linear adaptive algorithms such as least mean-square (LMS) and recursive least-squares (RLS) can be applied to solve for 2-D system paramaters. It is anticipated that the orthogonality property of the structure can be utilized to derive 2-D schur autoregressive-moving average (ARMA) models, and to solve the 2-D joint-process estimation problem. -IX-In the Schur order-update recursions, one can find general expressions for reflection coefficients forward and backward gap functions and error powers in more compact form. For p = 1,2,..., m and n = 1,2,...,p lattice coefficients can be written as: ?p(n) _ _p-n. -p(«) _ LP- Mn-1) ' LP Ep-n A(»-D and the minimum mean-square errors are given by ET = E^m~l) (l -I^”0 f^0) and tn ' m \ o m J The general form of the orthogonal 2-D schur equations are given by » 8Z.W Sp (W i tpn) Sp-n (*l>*2) Sp («^»«y p=l,2,...,m; n=l,2,...,pand starting withg^0)(^) = ğ? (kxJQ = R^k^-p) for p= 0,1,..., m algorithm starts from the 0-th order and continues up to the m-th order. The prediction error powers can be written as Ep-n EP i 1 _f(“)2 P ”lit 1 p-n Ep-n p(H-l) In this thesis, an example has been given in order to explain the outline of the theory by means of a first-quadrant support second order quarter-plane model. The proposed 2-D Schur structures are amenable to systolic implementations. This is quite significant as the processing of the 2-D data fields such as images in real time require high data rates. The simplicity of the algorithm is the main attractive feature and the only requirement is to select an ordering schema with two types of shifts (vertical and horizontal) in the prediction support region as a result of this, the first stages are 1-D gap functions. -vin-As the Schur structures form orthogonal bases, linear adaptive algorithms such as least mean-square (LMS) and recursive least-squares (RLS) can be applied to solve for 2-D system paramaters. It is anticipated that the orthogonality property of the structure can be utilized to derive 2-D schur autoregressive-moving average (ARMA) models, and to solve the 2-D joint-process estimation problem.

Benzer Tezler

  1. İki boyutlu kafes parametrelerinin sınırlı veri alanlarından hesaplanması

    The Calculation of the 2-D lattice parameters from short data records

    NURŞEN YILDIZ

    Yüksek Lisans

    Türkçe

    Türkçe

    1994

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    PROF.DR. AHMET HAMDİ KAYRAN

  2. Lineer denklem sistemleri için boyut indirgeme algoritması

    The algorithm of decreasing dimension for the systems of linear algebraic equation

    TUBA KESKİN ÜLKER

    Yüksek Lisans

    Türkçe

    Türkçe

    2005

    MatematikSelçuk Üniversitesi

    Matematik Ana Bilim Dalı

    Y.DOÇ.DR. KEMAL AYDIN

  3. 2D ve 3D matrislerle tanımlanan cebirsel yapılar üzerine

    On algebraic structures defined by 2D and 3D matrices

    BEYZA US

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    MatematikEskişehir Osmangazi Üniversitesi

    Matematik ve Bilgisayar Bilimleri Ana Bilim Dalı

    PROF. DR. AYŞE BAYAR

  4. Genelleştirilmiş kovaryant türevin weyl geometrisinde bazı uygulamaları

    Some application of prolonged covariant derivative in weyl geometry

    ELİF CANFES ÖZKARA

    Doktora

    Türkçe

    Türkçe

    1995

    Matematikİstanbul Teknik Üniversitesi

    PROF.DR. ÖZDEĞER ABDULKADİR

  5. On geodesic mappings of Riemannian manifolds

    Riemann manifoldlarında jeodezik dönüşümler

    AHMET UMUT ÇORAPLI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Matematikİstanbul Teknik Üniversitesi

    Matematik Mühendisliği Ana Bilim Dalı

    PROF. DR. ELİF CANFES