Geri Dön

Palm print identification

Avuç içi tanımlaması

  1. Tez No: 540297
  2. Yazar: BELAL ALI MESBAH JEBRIEL
  3. Danışmanlar: DR. ÖĞR. ÜYESİ HAKAN TORA
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Avuç izi tanımlama, yerel ikili örüntü (YİÖ), yönlü gradyan histogramı (YGH), sinir ağları, destek vektör makinesi (DVM), palm print identification, local binary pattern (LBP), histogram of oriented gradients (HOG), neural networks, support vector machine (SVM)
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 101

Özet

Bu tez, standart bir veritabanı ve bir temizleyici aracılığıyla avuç izi tanımlanmasının uygunluğunu araştırmaktadır. Bu çalışma, sol el ve sağ el görüntüleri içeren veritabanları CASIA ve IIT için iki öznitelik kümesi kullanmaktadır. Yerel ikili örüntü (YİÖ) ve yönlü gradyan histogram (YGH) öznitelikleri, MATLAB tarafından görüntülerden elde edilmiştir. Eğitim ve test setleri bu özelliklerden oluşturuldu. Çok katmanlı katmanlı bir sinir ağı ve lineer ve kuadratik kernel kullanan destek vektör makineleri (DVM), seçilen veritabanlarında eğitilmiş ve test edilmiştir. Seçilen özellikler deneysel olarak birbirleriyle karşılaştırılmıştır. Her iki sınıflandırıcı için YGH'de daha iyi sonuçlar elde edilmiştir. Ayrıca, sınıflandırıcıların performansı da değerlendirilmiştir. Sinir ağın, her iki veri setinin YİÖ öznitelikleri için SVM'den daha iyi sonuçlar verdiği gözlenmiştir. Ancak, YGH özellikleri için birbirlerine göre çok fazla avantajları yoktur.

Özet (Çeviri)

This thesis explores the appropriateness of identifying palm prints through a standard database and a classifier. This study uses two sets of databases, CASIA and IIT, which contain left hand and right hand images. The features of the local binary pattern (LBP) and histogram of oriented gradients (HOG) are extracted from the images by MATLAB. Training and testing sets are created from these features. A multilayer neural network and support vector machines (SVM) with two separate kernels, linear and quadratic, are trained and tested on the selected databases. The chosen features are empirically compared with one another. Better results have been accomplished in HOG for both classifiers. In addition, the performance of the classifiers are evaluated. It has been observed that the neural network achieves better results than SVM for LBP features of both datasets. On the other hand, for HOG features, they do not display many advantages over one another.

Benzer Tezler

  1. Görüntü işlemeye dayalı avuç içi izinin yapay sinir ağı ile tanınması

    Recognition of palmprint based on image processing with artificial neural network

    ENES ÇELİK

    Yüksek Lisans

    Türkçe

    Türkçe

    2011

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara Üniversitesi

    Elektronik-Bilgisayar Eğitimi Ana Bilim Dalı

    YRD. DOÇ. DR. ALİ BULDU

  2. Human identification using palm print images

    Palm resim kullanarak insan tanımları

    MOHAMED R.A ALHASSI

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Bilim ve TeknolojiYıldırım Beyazıt Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. ÖZKAN KILIÇ

  3. Human identification using palm print images based on combined local binary pattern and gray level co-occurrence matrix

    Başlık çevirisi yok

    AYSHA AHMED OTMAN TAYEB

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Bilgi Teknolojileri Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AHMET ALTUNDAG

  4. Human identification using palm print images based on deep learning methods and gray wolf optimization algorithm

    Derin öğrenme yöntemlerine ve gri kurt optimizasyonu algoritmasına dayalı palmiye baskı görüntüleri kullanarak insan tanımlama

    FIRAS HASAN ALI ALSHAKREE

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÇankırı Karatekin Üniversitesi

    Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AYHAN AKBAŞ

  5. Palmprint recognition using gabor wavelet transform

    Başlık çevirisi yok

    MOHAMMED ABDULAZEEZ HAYDER MUSAWI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgi ve Belge YönetimiAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AYÇA KURNAZ TÜRKBEN