Geri Dön

Modelling and estimating volatility with arch familymodels: An application on financial time series

Başlık çevirisi mevcut değil.

  1. Tez No: 645346
  2. Yazar: Seyit GÖDELEK
  3. Danışmanlar: PROF. DR. ROBERT M. KUNST
  4. Tez Türü: Yüksek Lisans
  5. Konular: Ekonomi, Maliye, Economics, Finance
  6. Anahtar Kelimeler: BIST, Time Series, Volatility, Conditional Mean, Conditional Variance, Conditional Heteroscedasticity, Volatility Clustering, Leverage Effect, ISE Indexes, ARMA, ARIMA, ARCH, GARCH, EGARCH, TGARCH, PARCH, APARCH
  7. Yıl: 2017
  8. Dil: İngilizce
  9. Üniversite: Universität Wien
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 102

Özet

Özet yok.

Özet (Çeviri)

Nowadays, the assumption of constant variance, which was valuable in traditional econometric methods, has lost its validity in modeling and predicting of financial time series. Because it is known that financial time series exhibit a wide volatility. It is seen that the variance and covariance of error terms of the observation change over time, depending on erratic movements in financial time series. Thus, instead of using linear time series in the modelling of variance and covariance, the use of nonlinear conditionally varying variance models becomes more common. The greatest advantage of ARCH models is that they have modeling power, which is seen in almost all of the time series, inter-period dependence and non-stationary variance, that is, volatility, without requiring any additional data other than the past values of the series. In this study, the concepts of risk, uncertainty, volatility and return, which increasingly become important for financial markets, and volatility clustering frequently encountered in financial statements, and asymmetric price movements, leverage effect and thick tail features are being investigated. The theoretical structure of ARMA and ARCH family models have also been introduced. Particularly, the capacities of these models for estimating and predicting the volatility of the BIST (Istanbul Stock Exchange) index have been examined. The model, which showed, had the best modeling performance, has also been tested for static and dynamic estimation performances for specified date ranges.

Benzer Tezler

  1. Volatiletinin modellenmesi ve öngörülmesinde arch modelleri: İMKB-100 endeksi üzerine bir uygulama

    Modelling and estimating volatility with arch models: An application on İSE-100 index

    FATMA DENİZ ÇOLAK

    Yüksek Lisans

    Türkçe

    Türkçe

    2013

    Ekonometriİstanbul Üniversitesi

    Finans Ana Bilim Dalı

    PROF. DR. KAMİL AHMET KÖSE

  2. Moğolistan'da döviz piyasısı hareketlerinin farklı varyans modelleri ile tahmini

    Estimation of exchange rate market movements in Mongolia with different variance models

    BATZORIG GANBOLD

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    EkonometriSakarya Üniversitesi

    İktisat Ana Bilim Dalı

    PROF. DR. AZİZ KUTLAR

  3. Merkez Bankası kur müdahalelerinin döviz piyasası oynaklığına etkisi: EURO ve dolar örneği

    Central Bank interventions and impacts over exchange market volatility: An empirical analysis of EURO and dollar

    ERDEM ŞEPHANELİOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    EkonometriMarmara Üniversitesi

    Ekonometri Ana Bilim Dalı

    PROF. DR. IŞIL AKGÜL

  4. Yapısal kırılmaların varlığında doğalgaz ve petrol fiyatlarının oynaklık modellemesi

    Volatility modeling of the natural gas and oil prices under the presence of structural breaks

    MERVE MERT

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    EkonometriDokuz Eylül Üniversitesi

    İktisat Ana Bilim Dalı

    PROF. DR. MERT URAL

  5. Borsa İstanbul pay piyasasında volatilite modellemesi: BİST banka endeksi üzerine bir uygulama

    Volatility modeling in Borsa Istanbul stock market: An application on BIST banking index

    GÜLŞAH AY

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    İşletmeRecep Tayyip Erdoğan Üniversitesi

    İşletme Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MUSA GÜN